Skip to main content
Top

2023 | OriginalPaper | Chapter

2. Deep Technologies Using Big Data in: Energy and Waste Management

Author : Jyotsna Verma

Published in: Deep Learning Technologies for the Sustainable Development Goals

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The potential of big data is growing exponentially, and over the next decade, it will almost change every business and industry. The diverse applications of big data have opened new dimensions for industrialization and urbanization. This leads to a huge energy crisis and environmental wastes. The conventional methods are incapable of handling energy crises and wastes. Moreover, the methods require a lot of manpower and resources which make them more costly. Thus, the ultimate solution of handling this computationally expensive and complex issue is by analyzing the demand of energy, classification, and identification of the source of wastes at every step of technological advances. Big data analytics is capable of analyzing these large datasets, still faces major setbacks because of high-dimensional, imbalance, and dynamic datasets. These difficulties lead to various other problems, such as search-based data analytics problems, multi-objective optimization problems, uncertain data problems, and classification and clustering problems. To address these issues, various data analytics tools and statistical techniques were designed by the researchers; but, the literature shows strong evidence that deep learning techniques are efficient in solving these complex and computationally expensive problems very well. This chapter attempts to exploit deep learning techniques to solve energy and waste management issues through big data analytics. Finally, the chapter concludes with the discussion and prospects of deep learning in big data analytics for energy and waste management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Directive, E.C.: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official J. Eur. Union L 312(3) (2008) Directive, E.C.: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official J. Eur. Union L 312(3) (2008)
4.
go back to reference Benson, N.U., Bassey, D.E., Palanisami, T.: COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 7(2), e06343 (2021)CrossRef Benson, N.U., Bassey, D.E., Palanisami, T.: COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 7(2), e06343 (2021)CrossRef
5.
go back to reference Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 873–880 (2009) Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 873–880 (2009)
6.
go back to reference Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)CrossRef Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)CrossRef
7.
go back to reference Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2011)CrossRef Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2011)CrossRef
8.
go back to reference Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)CrossRef Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)CrossRef
9.
go back to reference Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep architectures. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2133–2136. IEEE (2012) Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep architectures. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2133–2136. IEEE (2012)
10.
go back to reference Saha, B., Srivastava, D.: Data quality: the other face of big data. In: IEEE 30th International Conference on Data Engineering, pp. 1294–1297. IEEE (2014) Saha, B., Srivastava, D.: Data quality: the other face of big data. In: IEEE 30th International Conference on Data Engineering, pp. 1294–1297. IEEE (2014)
11.
go back to reference Becker, D., King, T.D., McMullen, B.: Big data, big data quality problem. In: IEEE International Conference on Big Data (Big Data), pp. 2644–2653. IEEE (2015) Becker, D., King, T.D., McMullen, B.: Big data, big data quality problem. In: IEEE International Conference on Big Data (Big Data), pp. 2644–2653. IEEE (2015)
12.
go back to reference Li, W., Xu, S., Peng, X.: Research on comprehensive evaluation of data source quality in big data environment. Int. J. Comput. Intell. Syst. (2021) Li, W., Xu, S., Peng, X.: Research on comprehensive evaluation of data source quality in big data environment. Int. J. Comput. Intell. Syst. (2021)
13.
go back to reference Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. In: NIPS, vol. 1, p. 2 (2012) Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. In: NIPS, vol. 1, p. 2 (2012)
14.
go back to reference Ouyang, W., Chu, X., Wang, X.: Multi-source deep learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2329–2336 (2014) Ouyang, W., Chu, X., Wang, X.: Multi-source deep learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2329–2336 (2014)
15.
go back to reference Zhao, L., Hu, Q., Wang, W.: Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimedia 17(11), 1936–1948 (2015)CrossRef Zhao, L., Hu, Q., Wang, W.: Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimedia 17(11), 1936–1948 (2015)CrossRef
16.
go back to reference Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)CrossRef Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)CrossRef
17.
go back to reference Liu, D., Chen, L., Wang, Z., Diao, G.: Speech expression multimodal emotion recognition based on deep belief network. J. Grid Comput. 19(2), 1–13 (2021)CrossRef Liu, D., Chen, L., Wang, Z., Diao, G.: Speech expression multimodal emotion recognition based on deep belief network. J. Grid Comput. 19(2), 1–13 (2021)CrossRef
18.
go back to reference Li, H., Huang, J., Huang, J., Chai, S., Zhao, L., Xia, Y.: Deep multimodal learning and fusion based intelligent fault diagnosis approach. J. Beijing Inst. Technol. 30(2), 172–185 (2021) Li, H., Huang, J., Huang, J., Chai, S., Zhao, L., Xia, Y.: Deep multimodal learning and fusion based intelligent fault diagnosis approach. J. Beijing Inst. Technol. 30(2), 172–185 (2021)
19.
go back to reference Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008) Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)
20.
go back to reference Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010) Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)
21.
go back to reference Li, R., Gao, H.: Denoising and feature extraction of weld seam profiles by stacked denoising autoencoder. Weld World 1–9 (2021) Li, R., Gao, H.: Denoising and feature extraction of weld seam profiles by stacked denoising autoencoder. Weld World 1–9 (2021)
22.
go back to reference Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs (2011) Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs (2011)
23.
go back to reference Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009) Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
24.
go back to reference Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Large-scale FPGA-based convolutional networks. In: Scaling up Machine Learning: Parallel and Distributed Approaches, vol. 13, no. 3, pp. 399–419 (2011) Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Large-scale FPGA-based convolutional networks. In: Scaling up Machine Learning: Parallel and Distributed Approaches, vol. 13, no. 3, pp. 399–419 (2011)
25.
go back to reference Qiu, C., Wang, X.A., Zhao, T., Li, Q., Wang, B., Wang, H.: An FPGA-based convolutional neural network coprocessor. Wireless Commun. Mobile Comput. 2021 (2021) Qiu, C., Wang, X.A., Zhao, T., Li, Q., Wang, B., Wang, H.: An FPGA-based convolutional neural network coprocessor. Wireless Commun. Mobile Comput. 2021 (2021)
26.
go back to reference Yoo, J., Lee, D., Son, C., Jung, S., Yoo, B., Choi, C., et al.: RaScaNet: learning tiny models by raster-scanning images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13673–13682 (2021) Yoo, J., Lee, D., Son, C., Jung, S., Yoo, B., Choi, C., et al.: RaScaNet: learning tiny models by raster-scanning images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13673–13682 (2021)
27.
go back to reference Shehzad, F., Rashid, M., Sinky, M.H., Alotaibi, S.S., Zia, M.Y.I.: A scalable system-on-chip acceleration for deep neural networks. IEEE Access (2021) Shehzad, F., Rashid, M., Sinky, M.H., Alotaibi, S.S., Zia, M.Y.I.: A scalable system-on-chip acceleration for deep neural networks. IEEE Access (2021)
28.
go back to reference Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)CrossRef Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)CrossRef
29.
go back to reference Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1891–1898 (2014) Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1891–1898 (2014)
30.
go back to reference Hassan, A., Mahmood, A.: Convolutional recurrent deep learning model for sentence classification. IEEE Access 6, 13949–13957 (2018)CrossRef Hassan, A., Mahmood, A.: Convolutional recurrent deep learning model for sentence classification. IEEE Access 6, 13949–13957 (2018)CrossRef
31.
go back to reference Lakshmanaprabu, S.K., Mohanty, S.N., Shankar, K., Arunkumar, N., Ramirez, G.: Optimal deep learning model for classification of lung cancer on CT images. Futur. Gener. Comput. Syst. 92, 374–382 (2019)CrossRef Lakshmanaprabu, S.K., Mohanty, S.N., Shankar, K., Arunkumar, N., Ramirez, G.: Optimal deep learning model for classification of lung cancer on CT images. Futur. Gener. Comput. Syst. 92, 374–382 (2019)CrossRef
32.
go back to reference Pye, M., McKane, A.: Making a stronger case for industrial energy efficiency by quantifying non-energy benefits. Resour. Conserv. Recycl. 28(3–4), 171–183 (2000)CrossRef Pye, M., McKane, A.: Making a stronger case for industrial energy efficiency by quantifying non-energy benefits. Resour. Conserv. Recycl. 28(3–4), 171–183 (2000)CrossRef
33.
go back to reference Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst, F.O.: Integrating energy efficiency performance in production management–gap analysis between industrial needs and scientific literature. J. Clean. Prod. 19(6–7), 667–679 (2011)CrossRef Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst, F.O.: Integrating energy efficiency performance in production management–gap analysis between industrial needs and scientific literature. J. Clean. Prod. 19(6–7), 667–679 (2011)CrossRef
34.
go back to reference Conticelli, E., Proli, S., Tondelli, S.: Integrating energy efficiency and urban densification policies: two Italian case studies. Energy Build. 155, 308–323 (2017)CrossRef Conticelli, E., Proli, S., Tondelli, S.: Integrating energy efficiency and urban densification policies: two Italian case studies. Energy Build. 155, 308–323 (2017)CrossRef
35.
go back to reference Cagno, E., Neri, A., Trianni, A.: Broadening to sustainability the perspective of industrial decision-makers on the energy efficiency measures adoption: some empirical evidence. Energ. Effi. 11(5), 1193–1210 (2018)CrossRef Cagno, E., Neri, A., Trianni, A.: Broadening to sustainability the perspective of industrial decision-makers on the energy efficiency measures adoption: some empirical evidence. Energ. Effi. 11(5), 1193–1210 (2018)CrossRef
36.
go back to reference Bin Abdulwahed, F.F.A.: The hidden benefits of energy efficiency: quantifying the impact of non-energy benefits when energy efficiency measures are implemented in the EU Iron and steel industry (Master’s thesis) (2021) Bin Abdulwahed, F.F.A.: The hidden benefits of energy efficiency: quantifying the impact of non-energy benefits when energy efficiency measures are implemented in the EU Iron and steel industry (Master’s thesis) (2021)
37.
go back to reference Introna, V., Cesarotti, V., Benedetti, M., Biagiotti, S., Rotunno, R.: Energy management maturity model: an organizational tool to foster the continuous reduction of energy consumption in companies. J. Clean. Prod. 83, 108–117 (2014)CrossRef Introna, V., Cesarotti, V., Benedetti, M., Biagiotti, S., Rotunno, R.: Energy management maturity model: an organizational tool to foster the continuous reduction of energy consumption in companies. J. Clean. Prod. 83, 108–117 (2014)CrossRef
38.
go back to reference Antunes, P., Carreira, P., da Silva, M.M.: Towards an energy management maturity model. Energy Policy 73, 803–814 (2014)CrossRef Antunes, P., Carreira, P., da Silva, M.M.: Towards an energy management maturity model. Energy Policy 73, 803–814 (2014)CrossRef
39.
go back to reference Sola, A.V., Mota, C.M.: Influencing factors on energy management in industries. J. Clean. Prod. 248, 119263 (2020)CrossRef Sola, A.V., Mota, C.M.: Influencing factors on energy management in industries. J. Clean. Prod. 248, 119263 (2020)CrossRef
41.
go back to reference Voivontas, D., Assimacopoulos, D., Mourelatos, A., Corominas, J.: Evaluation of renewable energy potential using a GIS decision support system. Renewable Energy 13(3), 333–344 (1998)CrossRef Voivontas, D., Assimacopoulos, D., Mourelatos, A., Corominas, J.: Evaluation of renewable energy potential using a GIS decision support system. Renewable Energy 13(3), 333–344 (1998)CrossRef
42.
go back to reference Jakubiec, J.A., Reinhart, C.F.: A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 93, 127–143 (2013)CrossRef Jakubiec, J.A., Reinhart, C.F.: A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 93, 127–143 (2013)CrossRef
43.
go back to reference Feng, J., Feng, L., Wang, J., King, C.W.: Evaluation of the onshore wind energy potential in mainland China—based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 152, 104484 (2020)CrossRef Feng, J., Feng, L., Wang, J., King, C.W.: Evaluation of the onshore wind energy potential in mainland China—based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 152, 104484 (2020)CrossRef
44.
go back to reference Ferla, G., Caputo, P., Colaninno, N., Morello, E.: Urban greenery management and energy planning: a GIS-based potential evaluation of pruning by-products for energy application for the city of Milan. Renewable Energy 160, 185–195 (2020)CrossRef Ferla, G., Caputo, P., Colaninno, N., Morello, E.: Urban greenery management and energy planning: a GIS-based potential evaluation of pruning by-products for energy application for the city of Milan. Renewable Energy 160, 185–195 (2020)CrossRef
45.
go back to reference Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5es), 166–178 (1998) Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5es), 166–178 (1998)
46.
go back to reference Devogele, T., Parent, C., Spaccapietra, S.: On spatial database integration. Int. J. Geogr. Inf. Sci. 12(4), 335–352 (1998)CrossRef Devogele, T., Parent, C., Spaccapietra, S.: On spatial database integration. Int. J. Geogr. Inf. Sci. 12(4), 335–352 (1998)CrossRef
47.
go back to reference Stencel, K.: A data model for heterogeneous data integration architecture Stencel, K.: A data model for heterogeneous data integration architecture
48.
go back to reference Hasan, F.F., Bakar, M.S.A.: An approach for data transformation in homogeneous and heterogeneous information systems. In: 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5. IEEE (2021) Hasan, F.F., Bakar, M.S.A.: An approach for data transformation in homogeneous and heterogeneous information systems. In: 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5. IEEE (2021)
49.
go back to reference Mhammedi, S., Gherabi, N.: Heterogeneous integration of big data using semantic web technologies. In: Intelligent Systems in Big Data, Semantic Web and Machine Learning, pp. 167–177. Springer, Cham (2021) Mhammedi, S., Gherabi, N.: Heterogeneous integration of big data using semantic web technologies. In: Intelligent Systems in Big Data, Semantic Web and Machine Learning, pp. 167–177. Springer, Cham (2021)
50.
go back to reference Bevilacqua, M., Ciarapica, F.E., Diamantini, C., Potena, D.: Big data analytics methodologies applied at energy management in industrial sector: a case study. Int. J. RF Technol. 8(3), 105–122 (2017)CrossRef Bevilacqua, M., Ciarapica, F.E., Diamantini, C., Potena, D.: Big data analytics methodologies applied at energy management in industrial sector: a case study. Int. J. RF Technol. 8(3), 105–122 (2017)CrossRef
51.
go back to reference Tian, Y., Yu, J., Zhao, A.: Predictive model of energy consumption for office building by using improved GWO-BP. Energy Rep. 6, 620–627 (2020)CrossRef Tian, Y., Yu, J., Zhao, A.: Predictive model of energy consumption for office building by using improved GWO-BP. Energy Rep. 6, 620–627 (2020)CrossRef
52.
go back to reference Kumar, M., Shenbagaraman, V.M., Shaw, R.N., Ghosh, A.: Predictive data analysis for energy management of a smart factory leading to sustainability. In: Innovations in Electrical and Electronic Engineering, pp. 765–773. Springer, Singapore (2021) Kumar, M., Shenbagaraman, V.M., Shaw, R.N., Ghosh, A.: Predictive data analysis for energy management of a smart factory leading to sustainability. In: Innovations in Electrical and Electronic Engineering, pp. 765–773. Springer, Singapore (2021)
53.
go back to reference Ozer, G., Garg, S., Davoudi, N., Poerwawinata, G., Maiterth, M., Netti, A., Tafani, D.: Towards a predictive energy model for HPC runtime systems using supervised learning. In: European Conference on Parallel Processing, pp. 626–638. Springer, Cham (2019) Ozer, G., Garg, S., Davoudi, N., Poerwawinata, G., Maiterth, M., Netti, A., Tafani, D.: Towards a predictive energy model for HPC runtime systems using supervised learning. In: European Conference on Parallel Processing, pp. 626–638. Springer, Cham (2019)
54.
go back to reference Thonipara, A., Runst, P., Ochsner, C., Bizer, K.: Energy efficiency of residential buildings in the European Union—an exploratory analysis of cross-country consumption patterns. Energy Policy 129, 1156–1167 (2019)CrossRef Thonipara, A., Runst, P., Ochsner, C., Bizer, K.: Energy efficiency of residential buildings in the European Union—an exploratory analysis of cross-country consumption patterns. Energy Policy 129, 1156–1167 (2019)CrossRef
55.
go back to reference Sachin, M.M., Baby, M.P., Ponraj, A.S.: Analysis of energy consumption using RNN-LSTM and ARIMA Model. In: J. Phys.: Conf. Ser. 1716(1), 012048 (2020) Sachin, M.M., Baby, M.P., Ponraj, A.S.: Analysis of energy consumption using RNN-LSTM and ARIMA Model. In: J. Phys.: Conf. Ser. 1716(1), 012048 (2020)
56.
go back to reference Bui-Duy, L., Vu-Thi-Minh, N.: Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia. Asian J. Shipping Logistics 37(1), 1–11 (2021)CrossRef Bui-Duy, L., Vu-Thi-Minh, N.: Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia. Asian J. Shipping Logistics 37(1), 1–11 (2021)CrossRef
57.
go back to reference Hu, K., Wu, J., Schwanen, T.: Differences in energy consumption in electric vehicles: an exploratory real-world study in Beijing. J. Adv. Transp. (2017) Hu, K., Wu, J., Schwanen, T.: Differences in energy consumption in electric vehicles: an exploratory real-world study in Beijing. J. Adv. Transp. (2017)
58.
go back to reference Sun, Y., Wang, S., Zhang, X., Chan, T.O., Wu, W.: Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data. Energy 226, 120351 (2021)CrossRef Sun, Y., Wang, S., Zhang, X., Chan, T.O., Wu, W.: Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data. Energy 226, 120351 (2021)CrossRef
59.
go back to reference Casado-Mansilla, D., Tsolakis, A.C., Borges, C.E., Kamara-Esteban, O., Krinidis, S., Avila, J.M., et al.: Socio-economic effect on ICT-based persuasive interventions towards energy efficiency in tertiary buildings. Energies 13(7), 1700 (2020)CrossRef Casado-Mansilla, D., Tsolakis, A.C., Borges, C.E., Kamara-Esteban, O., Krinidis, S., Avila, J.M., et al.: Socio-economic effect on ICT-based persuasive interventions towards energy efficiency in tertiary buildings. Energies 13(7), 1700 (2020)CrossRef
60.
go back to reference Elakkad, N., Ismaeel, W.S.: Coupling performance-prescriptive based daylighting principles for office buildings: case study from Egypt. Ain Shams Eng. J. (2021) Elakkad, N., Ismaeel, W.S.: Coupling performance-prescriptive based daylighting principles for office buildings: case study from Egypt. Ain Shams Eng. J. (2021)
61.
go back to reference Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018)CrossRef Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018)CrossRef
62.
go back to reference Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in Italy using linear regression models. Energy 34(9), 1413–1421 (2009)CrossRef Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in Italy using linear regression models. Energy 34(9), 1413–1421 (2009)CrossRef
63.
go back to reference Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)CrossRef Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)CrossRef
64.
go back to reference Yang, S.L., Shen, C.: A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 24, 103–110 (2013)CrossRef Yang, S.L., Shen, C.: A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 24, 103–110 (2013)CrossRef
65.
go back to reference Hafeez, G., Alimgeer, K.S., Wadud, Z., Shafiq, Z., Ali Khan, M.U., Khan, I., et al.: A novel accurate and fast converging deep learning-based model for electrical energy consumption forecasting in a smart grid. Energies 13(9), 2244 (2020)CrossRef Hafeez, G., Alimgeer, K.S., Wadud, Z., Shafiq, Z., Ali Khan, M.U., Khan, I., et al.: A novel accurate and fast converging deep learning-based model for electrical energy consumption forecasting in a smart grid. Energies 13(9), 2244 (2020)CrossRef
66.
go back to reference Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S., Houchati, M., Bouhali, O., Bañales, S.: Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 9, 54992–55008 (2021)CrossRef Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S., Houchati, M., Bouhali, O., Bañales, S.: Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 9, 54992–55008 (2021)CrossRef
67.
go back to reference Hafeez, G., Alimgeer, K.S., Khan, I.: Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 269, 114915 (2020)CrossRef Hafeez, G., Alimgeer, K.S., Khan, I.: Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 269, 114915 (2020)CrossRef
68.
go back to reference Hong, Y., Zhou, Y., Li, Q., Xu, W., Zheng, X.: A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 8, 55785–55797 (2020)CrossRef Hong, Y., Zhou, Y., Li, Q., Xu, W., Zheng, X.: A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 8, 55785–55797 (2020)CrossRef
69.
go back to reference Borenstein, S.: The long-run efficiency of real-time electricity pricing. Energy J. 26(3) (2005) Borenstein, S.: The long-run efficiency of real-time electricity pricing. Energy J. 26(3) (2005)
70.
go back to reference Oldewurtel, F., Ulbig, A., Parisio, A., Andersson, G., Morari, M.: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. In: 49th IEEE Conference on Decision and Control (CDC), pp. 1927–1932. IEEE (2010) Oldewurtel, F., Ulbig, A., Parisio, A., Andersson, G., Morari, M.: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. In: 49th IEEE Conference on Decision and Control (CDC), pp. 1927–1932. IEEE (2010)
71.
go back to reference Chao, H.P.: Efficient pricing and investment in electricity markets with intermittent resources. Energy Policy 39(7), 3945–3953 (2011)CrossRef Chao, H.P.: Efficient pricing and investment in electricity markets with intermittent resources. Energy Policy 39(7), 3945–3953 (2011)CrossRef
72.
go back to reference Gyamfi, S., Krumdieck, S., Urmee, T.: Residential peak electricity demand response—highlights of some behavioural issues. Renew. Sustain. Energy Rev. 25, 71–77 (2013)CrossRef Gyamfi, S., Krumdieck, S., Urmee, T.: Residential peak electricity demand response—highlights of some behavioural issues. Renew. Sustain. Energy Rev. 25, 71–77 (2013)CrossRef
73.
go back to reference Jiang, T., Cao, Y., Yu, L., Wang, Z.: Load shaping strategy based on energy storage and dynamic pricing in smart grid. IEEE Trans. Smart Grid 5(6), 2868–2876 (2014)CrossRef Jiang, T., Cao, Y., Yu, L., Wang, Z.: Load shaping strategy based on energy storage and dynamic pricing in smart grid. IEEE Trans. Smart Grid 5(6), 2868–2876 (2014)CrossRef
74.
go back to reference Lu, R., Hong, S.H., Zhang, X.: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach. Appl. Energy 220, 220–230 (2018)CrossRef Lu, R., Hong, S.H., Zhang, X.: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach. Appl. Energy 220, 220–230 (2018)CrossRef
75.
go back to reference Mawson, V.J., Hughes, B.R.: Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector. Energy Build. 217, 109966 (2020)CrossRef Mawson, V.J., Hughes, B.R.: Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector. Energy Build. 217, 109966 (2020)CrossRef
76.
go back to reference Jana, R.K., Ghosh, I., Sanyal, M.K.: A granular deep learning approach for predicting energy consumption. Appl. Soft Comput. 89, 106091 (2020)CrossRef Jana, R.K., Ghosh, I., Sanyal, M.K.: A granular deep learning approach for predicting energy consumption. Appl. Soft Comput. 89, 106091 (2020)CrossRef
77.
go back to reference Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017)CrossRef Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017)CrossRef
78.
go back to reference Mujeeb, S., Alghamdi, T.A., Ullah, S., Fatima, A., Javaid, N., Saba, T.: Exploiting deep learning for wind power forecasting based on big data analytics. Appl. Sci. 9(20), 4417 (2019)CrossRef Mujeeb, S., Alghamdi, T.A., Ullah, S., Fatima, A., Javaid, N., Saba, T.: Exploiting deep learning for wind power forecasting based on big data analytics. Appl. Sci. 9(20), 4417 (2019)CrossRef
79.
go back to reference Zhang, R., Feng, M., Zhang, W., Lu, S., Wang, F.: Forecast of solar energy production—a deep learning approach. In: IEEE International Conference on Big Knowledge (ICBK), pp. 73–82. IEEE (2018) Zhang, R., Feng, M., Zhang, W., Lu, S., Wang, F.: Forecast of solar energy production—a deep learning approach. In: IEEE International Conference on Big Knowledge (ICBK), pp. 73–82. IEEE (2018)
80.
go back to reference Almeshaiei, E., Al-Habaibeh, A., Shakmak, B.: Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems’ manufacturers. J. Clean. Prod. 244, 118788 (2020)CrossRef Almeshaiei, E., Al-Habaibeh, A., Shakmak, B.: Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems’ manufacturers. J. Clean. Prod. 244, 118788 (2020)CrossRef
81.
go back to reference Dodiya, M., Shah, M.: A systematic study on shaping the future of solar prosumage using deep learning. Int. J. Energy Water Res. 1–11 (2021) Dodiya, M., Shah, M.: A systematic study on shaping the future of solar prosumage using deep learning. Int. J. Energy Water Res. 1–11 (2021)
82.
go back to reference Lu, Y.S., Lai, K.Y.: Deep-learning-based power generation forecasting of thermal energy conversion. Entropy 22(10), 1161 (2020)CrossRef Lu, Y.S., Lai, K.Y.: Deep-learning-based power generation forecasting of thermal energy conversion. Entropy 22(10), 1161 (2020)CrossRef
83.
go back to reference Correa-Jullian, C., Cardemil, J.M., Droguett, E.L., Behzad, M.: Assessment of deep learning techniques for prognosis of solar thermal systems. Renewable Energy 145, 2178–2191 (2020)CrossRef Correa-Jullian, C., Cardemil, J.M., Droguett, E.L., Behzad, M.: Assessment of deep learning techniques for prognosis of solar thermal systems. Renewable Energy 145, 2178–2191 (2020)CrossRef
84.
go back to reference Lu, Y., Tian, Z., Zhou, R., Liu, W.: Multi-step-ahead prediction of thermal load in regional energy system using deep learning method. Energy Build. 233, 110658 (2021)CrossRef Lu, Y., Tian, Z., Zhou, R., Liu, W.: Multi-step-ahead prediction of thermal load in regional energy system using deep learning method. Energy Build. 233, 110658 (2021)CrossRef
85.
go back to reference Directive, E.C.: 98/EC of the European Parliament and of the Council, on waste and repealing certain Directives. Off. J. Eur. Union 312, 3–30 (2008) Directive, E.C.: 98/EC of the European Parliament and of the Council, on waste and repealing certain Directives. Off. J. Eur. Union 312, 3–30 (2008)
86.
go back to reference Prasanna, A., Vikash Kaushal, S.: Survey on identification and classification of waste for efficient disposal and recycling. Int. J. Eng. Technol. 7(2.8), 520–523 (2018) Prasanna, A., Vikash Kaushal, S.: Survey on identification and classification of waste for efficient disposal and recycling. Int. J. Eng. Technol. 7(2.8), 520–523 (2018)
87.
go back to reference Saeed, M.O., Hassan, M.N., Mujeebu, M.A.: Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia. Waste manage. 29(7), 2209–2213 (2009)CrossRef Saeed, M.O., Hassan, M.N., Mujeebu, M.A.: Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia. Waste manage. 29(7), 2209–2213 (2009)CrossRef
88.
go back to reference Yuan, H., Shen, L., Wang, J.: Major obstacles to improving the performance of waste management in China’s construction industry. Facilities (2011) Yuan, H., Shen, L., Wang, J.: Major obstacles to improving the performance of waste management in China’s construction industry. Facilities (2011)
89.
go back to reference Pattnaik, S., Reddy, M.V.: Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resour. Conserv. Recycl. 54(8), 512–520 (2010)CrossRef Pattnaik, S., Reddy, M.V.: Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resour. Conserv. Recycl. 54(8), 512–520 (2010)CrossRef
90.
go back to reference Shinde, P.P., Oza, K.S., Kamat, R.K.: Big data predictive analysis: using R analytical tool. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pp. 839–842. IEEE (2017) Shinde, P.P., Oza, K.S., Kamat, R.K.: Big data predictive analysis: using R analytical tool. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pp. 839–842. IEEE (2017)
91.
go back to reference Nowakowski, P., Pamuła, T.: Application of deep learning object classifier to improve e-waste collection planning. Waste Manage. 109, 1–9 (2020)CrossRef Nowakowski, P., Pamuła, T.: Application of deep learning object classifier to improve e-waste collection planning. Waste Manage. 109, 1–9 (2020)CrossRef
92.
go back to reference Ahmad, S., Kim, D.H.: Quantum GIS based descriptive and predictive data analysis for effective planning of waste management. IEEE Access 8, 46193–46205 (2020)CrossRef Ahmad, S., Kim, D.H.: Quantum GIS based descriptive and predictive data analysis for effective planning of waste management. IEEE Access 8, 46193–46205 (2020)CrossRef
93.
go back to reference Liang, S., Gu, Y.: A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manage. 126, 247–257 (2021)CrossRef Liang, S., Gu, Y.: A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manage. 126, 247–257 (2021)CrossRef
94.
go back to reference Agarwal, H., Ahir, B., Bide, P., Jain, S., Barot, H.: Minimization of food waste in retail sector using time-series analysis and object detection algorithm. In: International Conference for Emerging Technology (INCET), pp 1–7. IEEE (2020) Agarwal, H., Ahir, B., Bide, P., Jain, S., Barot, H.: Minimization of food waste in retail sector using time-series analysis and object detection algorithm. In: International Conference for Emerging Technology (INCET), pp 1–7. IEEE (2020)
95.
go back to reference Rashmi, G.: Regularized noise based GRU model to forecast solid waste generation in the urban region. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(10), 5449–5458 (2021) Rashmi, G.: Regularized noise based GRU model to forecast solid waste generation in the urban region. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(10), 5449–5458 (2021)
96.
go back to reference Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., Liu, X.: Recyclable waste image recognition based on deep learning. Resour. Conserv. Recycl. 171, 105636 (2021)CrossRef Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., Liu, X.: Recyclable waste image recognition based on deep learning. Resour. Conserv. Recycl. 171, 105636 (2021)CrossRef
97.
go back to reference Altikat, A., Gulbe, A., Altikat, S.: Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environ. Sci. Technol. 1–8 (2021) Altikat, A., Gulbe, A., Altikat, S.: Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environ. Sci. Technol. 1–8 (2021)
98.
go back to reference Agovino, M., Ferrara, M., Garofalo, A.: An exploratory analysis on waste management in Italy: a focus on waste disposed in landfill. Land Use Policy 57, 669–681 (2016)CrossRef Agovino, M., Ferrara, M., Garofalo, A.: An exploratory analysis on waste management in Italy: a focus on waste disposed in landfill. Land Use Policy 57, 669–681 (2016)CrossRef
99.
go back to reference Knol-Kauffman, M., Solås, A.M., Arbo, P.: Government-industry dynamics in the development of offshore waste management in Norway: from prescriptive to risk-based regulation. J. Environ. Planning Manage. 64(4), 649–670 (2021)CrossRef Knol-Kauffman, M., Solås, A.M., Arbo, P.: Government-industry dynamics in the development of offshore waste management in Norway: from prescriptive to risk-based regulation. J. Environ. Planning Manage. 64(4), 649–670 (2021)CrossRef
100.
go back to reference Chu, Y., Huang, C., Xie, X., Tan, B., Kamal, S., Xiong, X.: Multilayer hybrid deep-learning method for waste classification and recycling. Comput. Intell. Neurosci. 2018 (2018) Chu, Y., Huang, C., Xie, X., Tan, B., Kamal, S., Xiong, X.: Multilayer hybrid deep-learning method for waste classification and recycling. Comput. Intell. Neurosci. 2018 (2018)
101.
go back to reference Sheng, T.J., Islam, M.S., Misran, N., Baharuddin, M.H., Arshad, H., Islam, M.R., et al.: An internet of things based smart waste management system using LoRa and tensorflow deep learning model. IEEE Access 8, 148793–148811 (2020)CrossRef Sheng, T.J., Islam, M.S., Misran, N., Baharuddin, M.H., Arshad, H., Islam, M.R., et al.: An internet of things based smart waste management system using LoRa and tensorflow deep learning model. IEEE Access 8, 148793–148811 (2020)CrossRef
102.
go back to reference Vrancken, C., Longhurst, P., Wagland, S.: Deep learning in material recovery: development of method to create training database. Expert Syst. Appl. 125, 268–280 (2019)CrossRef Vrancken, C., Longhurst, P., Wagland, S.: Deep learning in material recovery: development of method to create training database. Expert Syst. Appl. 125, 268–280 (2019)CrossRef
103.
go back to reference Cubillos, M.: Multi-site household waste generation forecasting using a deep learning approach. Waste Manage. 115, 8–14 (2020)CrossRef Cubillos, M.: Multi-site household waste generation forecasting using a deep learning approach. Waste Manage. 115, 8–14 (2020)CrossRef
104.
go back to reference Niska, H., Serkkola, A.: Data analytics approach to create waste generation profiles for waste management and collection. Waste Manage. 77, 477–485 (2018)CrossRef Niska, H., Serkkola, A.: Data analytics approach to create waste generation profiles for waste management and collection. Waste Manage. 77, 477–485 (2018)CrossRef
105.
go back to reference Vafeiadis, T., Nizamis, A., Pavlopoulos, V., Giugliano, L., Rousopoulou, V., Ioannidis, D., Tzovaras, D.: Data analytics platform for the optimization of waste management procedures. In 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 333–338. IEEE (2019) Vafeiadis, T., Nizamis, A., Pavlopoulos, V., Giugliano, L., Rousopoulou, V., Ioannidis, D., Tzovaras, D.: Data analytics platform for the optimization of waste management procedures. In 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 333–338. IEEE (2019)
106.
go back to reference Xia, M., Li, T., Xu, L., Liu, L., De Silva, C.W.: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mechatron. 23(1), 101–110 (2017)CrossRef Xia, M., Li, T., Xu, L., Liu, L., De Silva, C.W.: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mechatron. 23(1), 101–110 (2017)CrossRef
107.
go back to reference Massaoudi, M., Abu-Rub, H., Refaat, S.S., Chihi, I., Oueslati, F.S.: Deep learning in smart grid technology: a review of recent advancements and future prospects. IEEE Access 9, 54558–54578 (2021)CrossRef Massaoudi, M., Abu-Rub, H., Refaat, S.S., Chihi, I., Oueslati, F.S.: Deep learning in smart grid technology: a review of recent advancements and future prospects. IEEE Access 9, 54558–54578 (2021)CrossRef
Metadata
Title
Deep Technologies Using Big Data in: Energy and Waste Management
Author
Jyotsna Verma
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-5723-9_2

Premium Partner