Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 4/2020

06-08-2019 | Original Article

DeepCascade-WR: a cascading deep architecture based on weak results for time series prediction

Authors: Chunyang Zhang, Qun Dai, Gang Song

Published in: International Journal of Machine Learning and Cybernetics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Noisy and nonstationary real-world time series predictions (TSPs) are challenging tasks. Confronted with these challenging tasks, the predictive power of traditional shallow models is commonly not satisfactory enough. While the research on deep learning (DL) has made milestone breakthrough in recent years, and DL paradigm has gradually become indispensable for accomplishing these complex tasks. In this work, a cascading deep architecture based on weak results (DeepCascade-WR) is established, which possesses deep models’ marked capability of feature representation learning based on complex data. In DeepCascade-WR, weak prediction results are defined, innovating the forecasting mode of traditional TSP. The original data will be properly reconstituted with prior knowledge, generating attribute vectors with valid predictive information. DeepCascade-WR possesses online learning ability and effectively avoids the retraining problem, owing to the property of OS-ELM, one base model of DeepCascade-WR. Besides, ELM is exploited as another base model of DeepCascade-WR, therefore, DeepCascade-WR naturally inherits some valuable virtues from ELM, including faster training speed, better generalization ability and the avoidance of being fallen into local optima. Ultimately, in the empirical results, DeepCascade-WR demonstrates its superior predictive performance on five benchmark financial datasets, i.e., ^DJI, ^GSK, ^HSI, JOUT, and S&P 500 Index, compared with its base learners and other state-of-the-art algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Crone SF, Hibon M, Nikolopoulos K (2011) Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. Int J Forecast 27:635–660CrossRef Crone SF, Hibon M, Nikolopoulos K (2011) Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. Int J Forecast 27:635–660CrossRef
2.
go back to reference Villarreal J, BaffesP (2015) Time series prediction using neural networks. In: Expert systems for civil engineers: knowledge representation, American Society of Civil Engineers, pp 268–282 Villarreal J, BaffesP (2015) Time series prediction using neural networks. In: Expert systems for civil engineers: knowledge representation, American Society of Civil Engineers, pp 268–282
3.
go back to reference Chandra R (2015) Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans Neural Netw Learn Syst 26:3123–3136MathSciNetCrossRef Chandra R (2015) Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans Neural Netw Learn Syst 26:3123–3136MathSciNetCrossRef
4.
go back to reference Dieleman S, Willett KW, Dambre J (2015) Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon Not R Astron Soc 450:1441–1459CrossRef Dieleman S, Willett KW, Dambre J (2015) Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon Not R Astron Soc 450:1441–1459CrossRef
5.
go back to reference Gaxiola F, Melin P, Valdez F, Castillo O (2015) Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction. Inf Sci 325:159–174MathSciNetCrossRef Gaxiola F, Melin P, Valdez F, Castillo O (2015) Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction. Inf Sci 325:159–174MathSciNetCrossRef
6.
go back to reference Melin P, Castillo O, Mancilla A, Lopez M (2016) Simulation and forecasting complex economic time series using neural network models. J Intell Syst 14:193–212 Melin P, Castillo O, Mancilla A, Lopez M (2016) Simulation and forecasting complex economic time series using neural network models. J Intell Syst 14:193–212
7.
go back to reference Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst Appl 42:855–863CrossRef Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst Appl 42:855–863CrossRef
8.
go back to reference Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. J. Nature 323:533–536CrossRef Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. J. Nature 323:533–536CrossRef
9.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
10.
go back to reference Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of international conference on machine learning, pp 160–167 Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of international conference on machine learning, pp 160–167
11.
go back to reference Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V (2014) Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082 [cs.CV] Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V (2014) Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:​1312.​6082 [cs.CV]
12.
14.
go back to reference Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans Pattern Anal Mach Intell 35:1930–1943CrossRef Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans Pattern Anal Mach Intell 35:1930–1943CrossRef
15.
go back to reference Liang NY, Huang GB, Saratchandran P et al (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423CrossRef Liang NY, Huang GB, Saratchandran P et al (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423CrossRef
16.
go back to reference Schölkopf B, Platt J, Hofmann T (2006) Greedy layer-wise training of deep networks. In: Expert systems for civil engineers: advances in neural information processing systems, pp 153–160 Schölkopf B, Platt J, Hofmann T (2006) Greedy layer-wise training of deep networks. In: Expert systems for civil engineers: advances in neural information processing systems, pp 153–160
17.
go back to reference Golub GH, Loan CFV (1996) Matrix computations, 3rd ed. DBLP, pp 463–535 Golub GH, Loan CFV (1996) Matrix computations, 3rd ed. DBLP, pp 463–535
19.
go back to reference Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137:47–56CrossRef Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137:47–56CrossRef
21.
go back to reference Bartley WW (2010) Evolutionary epistemology, rationality, and the sociology of knowledge. In: Philosophical books, vol 30, pp 94–97 Bartley WW (2010) Evolutionary epistemology, rationality, and the sociology of knowledge. In: Philosophical books, vol 30, pp 94–97
22.
go back to reference Pearsall J (2001) The concise Oxford Dictionary. Oxford University Press, Oxford Pearsall J (2001) The concise Oxford Dictionary. Oxford University Press, Oxford
23.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems 25 (NIPS 2012) Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems 25 (NIPS 2012)
24.
go back to reference Tang J, Deng C, Huang GB (2015) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27:809–821MathSciNetCrossRef Tang J, Deng C, Huang GB (2015) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27:809–821MathSciNetCrossRef
Metadata
Title
DeepCascade-WR: a cascading deep architecture based on weak results for time series prediction
Authors
Chunyang Zhang
Qun Dai
Gang Song
Publication date
06-08-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 4/2020
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-019-00994-7

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue