Skip to main content
Top
Published in:

01-12-2023 | Original Article

DEES: a real-time system for event extraction from disaster-related web text

Authors: Nilani Algiriyage, Raj Prasanna, Kristin Stock, Emma E. H. Doyle, David Johnston

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid growth of Internet-based communication technologies in the form of Social Media (SM) and associated mobile applications has enabled people to share information related to disaster events in “real-time” as they unfold. People are increasingly using SM platforms to report situational information during disasters, such as critical needs, dead or injured people, and property damage. Despite their usefulness, the majority of this pertinent data is not available to humanitarian organisations during emergencies, mainly due to several data processing and data quality issues. The proliferation of online news media has also led to the exchange of a massive amount of information during disasters, mostly validated by official sources. The integration of SM data with online news reports can provide filtered information while adding more details on the progress of an event than is already published in online news. This research project introduces Disaster Event Extraction System (DEES), a real-time system for extracting disaster events from both online news and tweets. DEES is evaluated on a dataset collected during the Nepal earthquake in 2015. Our results suggest that integrating both SM and news text data improves the event extraction system’s performance compared to using SM data alone. A demonstration of DEES is available at: https://​mu-clab.​github.​io/​.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Algiriyage N, Sampath R, Prasanna R, Doyle EE, Stock K, Johnston D (2021) Identifying disaster-related tweets: a large-scale detection model comparison Algiriyage N, Sampath R, Prasanna R, Doyle EE, Stock K, Johnston D (2021) Identifying disaster-related tweets: a large-scale detection model comparison
go back to reference Alomari E, Mehmood R, Katib I (2019) Road traffic event detection using twitter data, machine learning, and apache spark. In: 2019 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, pp 1888–1895 . https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00332 Alomari E, Mehmood R, Katib I (2019) Road traffic event detection using twitter data, machine learning, and apache spark. In: 2019 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, pp 1888–1895 . https://​doi.​org/​10.​1109/​SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.​2019.​00332
go back to reference Ashktorab Z, Brown C, Nandi M, Culotta A (2014) Tweedr: mining twitter to inform disaster response. In: ISCRAM, pp 269–272 Ashktorab Z, Brown C, Nandi M, Culotta A (2014) Tweedr: mining twitter to inform disaster response. In: ISCRAM, pp 269–272
go back to reference Caragea C, McNeese NJ, Jaiswal AR, Traylor G, Kim H-W, Mitra P, Wu D, Tapia AH, Giles CL, Jansen BJ et al (2011) Classifying text messages for the haiti earthquake. In: ISCRAM . Citeseer Caragea C, McNeese NJ, Jaiswal AR, Traylor G, Kim H-W, Mitra P, Wu D, Tapia AH, Giles CL, Jansen BJ et al (2011) Classifying text messages for the haiti earthquake. In: ISCRAM . Citeseer
go back to reference Dhavase N, Bagade A (2014) Location identification for crime & disaster events by geoparsing twitter. In: International conference for convergence for technology-2014, IEEE, pp 1–3 Dhavase N, Bagade A (2014) Location identification for crime & disaster events by geoparsing twitter. In: International conference for convergence for technology-2014, IEEE, pp 1–3
go back to reference Guo W, Li H, Ji H, Diab M (2013) Linking tweets to news: a framework to enrich short text data in social media. In: Proceedings of the 51st annual meeting of the association for computational linguistics, Vol. 1, Long Papers, pp 239–249 Guo W, Li H, Ji H, Diab M (2013) Linking tweets to news: a framework to enrich short text data in social media. In: Proceedings of the 51st annual meeting of the association for computational linguistics, Vol. 1, Long Papers, pp 239–249
go back to reference Ha H, Hwang B-Y (2016) Keyword filtering about disaster and the method of detecting area in detecting real-time event using twitter. KIPS Trans Softw Data Eng 5(7):345–350CrossRef Ha H, Hwang B-Y (2016) Keyword filtering about disaster and the method of detecting area in detecting real-time event using twitter. KIPS Trans Softw Data Eng 5(7):345–350CrossRef
go back to reference Hamborg F, Breitinger C, Gipp B (2019) Giveme5w1h: A universal system for extracting main events from news articles. In: Özgöbek, Ö., Kille, B., Gulla, J.A., Lommatzsch, A. (eds.) Proceedings of the 7th International workshop on news recommendation and analytics in conjunction with 13th ACM conference on recommender systems, INRA@RecSys 2019, Copenhagen, Denmark, September 20, 2019. CEUR Workshop Proceedings, vol. 2554, pp 35–43. CEUR-WS.org. http://ceur-ws.org/Vol-2554/paper_06.pdf Hamborg F, Breitinger C, Gipp B (2019) Giveme5w1h: A universal system for extracting main events from news articles. In: Özgöbek, Ö., Kille, B., Gulla, J.A., Lommatzsch, A. (eds.) Proceedings of the 7th International workshop on news recommendation and analytics in conjunction with 13th ACM conference on recommender systems, INRA@RecSys 2019, Copenhagen, Denmark, September 20, 2019. CEUR Workshop Proceedings, vol. 2554, pp 35–43. CEUR-WS.org. http://​ceur-ws.​org/​Vol-2554/​paper_​06.​pdf
go back to reference Hamborg F, Lachnit S, Schubotz M, Hepp T, Gipp B (2018) Giveme5w: main event retrieval from news articles by extraction of the five journalistic w questions. In: International conference on information, Springer, pp 356–366 Hamborg F, Lachnit S, Schubotz M, Hepp T, Gipp B (2018) Giveme5w: main event retrieval from news articles by extraction of the five journalistic w questions. In: International conference on information, Springer, pp 356–366
go back to reference Imran M, Alam F, Qazi U, Peterson S, Ofli F (2020) Rapid damage assessment using social media images by combining human and machine intelligence. CoRR arXiv:2004.06675 Imran M, Alam F, Qazi U, Peterson S, Ofli F (2020) Rapid damage assessment using social media images by combining human and machine intelligence. CoRR arXiv:​2004.​06675
go back to reference Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: artificial intelligence for disaster response. In: 23rd international World Wide Web conference, WWW ’14, Seoul, Republic of Korea, April 7–11, 2014, Companion Volume, pp 159–162 . https://doi.org/10.1145/2567948.2577034 Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: artificial intelligence for disaster response. In: 23rd international World Wide Web conference, WWW ’14, Seoul, Republic of Korea, April 7–11, 2014, Companion Volume, pp 159–162 . https://​doi.​org/​10.​1145/​2567948.​2577034
go back to reference Jang B, Kim I, Kim JW (2019) Word2vec convolutional neural networks for classification of news articles and tweets. PloS One 14(8):0220976CrossRef Jang B, Kim I, Kim JW (2019) Word2vec convolutional neural networks for classification of news articles and tweets. PloS One 14(8):0220976CrossRef
go back to reference Kalyanam J, Quezada M, Poblete B, Lanckriet G (2016) Prediction and characterization of high-activity events in social media triggered by real-world news. PloS One 11(12):0166694CrossRef Kalyanam J, Quezada M, Poblete B, Lanckriet G (2016) Prediction and characterization of high-activity events in social media triggered by real-world news. PloS One 11(12):0166694CrossRef
go back to reference Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States, pp 3111–3119 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States, pp 3111–3119
go back to reference Neppalli VK, Caragea C, Caragea D (2018) Deep neural networks versus naive bayes classifiers for identifying informative tweets during disasters. In: ISCRAM Neppalli VK, Caragea C, Caragea D (2018) Deep neural networks versus naive bayes classifiers for identifying informative tweets during disasters. In: ISCRAM
go back to reference Norambuena BK, Horning M, Mitra T (2020) Evaluating the inverted pyramid structure through automatic 5w1h extraction and summarization. In: Computational journalism symposium Norambuena BK, Horning M, Mitra T (2020) Evaluating the inverted pyramid structure through automatic 5w1h extraction and summarization. In: Computational journalism symposium
go back to reference Pandhare KR, Shah MA (2017) Real time road traffic event detection using twitter and spark. In: 2017 International conference on inventive communication and computational technologies (ICICCT), IEEE, pp 445–449 Pandhare KR, Shah MA (2017) Real time road traffic event detection using twitter and spark. In: 2017 International conference on inventive communication and computational technologies (ICICCT), IEEE, pp 445–449
go back to reference Petroni F, Raman N, Nugent T, Nourbakhsh A, Panić Ž, Shah S, Leidner J (2018) An extensible event extraction system with cross-media event resolution. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 626–635 . https://doi.org/10.1145/3219819.3219827 Petroni F, Raman N, Nugent T, Nourbakhsh A, Panić Ž, Shah S, Leidner J (2018) An extensible event extraction system with cross-media event resolution. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 626–635 . https://​doi.​org/​10.​1145/​3219819.​3219827
go back to reference Shrestha P, Jacquin C, Daille B (2012) Clustering short text and its evaluation. In: International conference on intelligent text processing and computational linguistics, Springer, pp 169–180 Shrestha P, Jacquin C, Daille B (2012) Clustering short text and its evaluation. In: International conference on intelligent text processing and computational linguistics, Springer, pp 169–180
go back to reference Téllez-Valero A, Montes-y-Gómez M, Pineda LV (2009) Using machine learning for extracting information from natural disaster news reports. Computación y Sistemas 13(1):33–44 Téllez-Valero A, Montes-y-Gómez M, Pineda LV (2009) Using machine learning for extracting information from natural disaster news reports. Computación y Sistemas 13(1):33–44
go back to reference Verma R, Karimi S, Lee D, Gnawali O, Shakery A (2019) Newswire versus social media for disaster response and recovery. In: 2019 resilience week (RWS), IEEE, vol. 1, pp 132–141 Verma R, Karimi S, Lee D, Gnawali O, Shakery A (2019) Newswire versus social media for disaster response and recovery. In: 2019 resilience week (RWS), IEEE, vol. 1, pp 132–141
go back to reference Wang KSHW (2010) Representing dynamic phenomena based on spatiotemporal information extracted from web documents. In: Extended abstracts, GIScience conference 2010 Wang KSHW (2010) Representing dynamic phenomena based on spatiotemporal information extracted from web documents. In: Extended abstracts, GIScience conference 2010
go back to reference Wang Z, Ye X (2019) Space, time, and situational awareness in natural hazards: a case study of hurricane sandy with social media data. Cartogr Geogr Inf Sci 46(4):334–346MathSciNetCrossRef Wang Z, Ye X (2019) Space, time, and situational awareness in natural hazards: a case study of hurricane sandy with social media data. Cartogr Geogr Inf Sci 46(4):334–346MathSciNetCrossRef
go back to reference Wang Z, Ye X, Tsou M-H (2016) Spatial, temporal, and content analysis of twitter for wildfire hazards. Nat Hazards 83(1):523–540CrossRef Wang Z, Ye X, Tsou M-H (2016) Spatial, temporal, and content analysis of twitter for wildfire hazards. Nat Hazards 83(1):523–540CrossRef
go back to reference Wanichayapong N, Pruthipunyaskul W, Pattara-Atikom W, Chaovalit P (2011) Social-based traffic information extraction and classification. In: 2011 11th international conference on ITS telecommunications, IEEE, pp 107–112 Wanichayapong N, Pruthipunyaskul W, Pattara-Atikom W, Chaovalit P (2011) Social-based traffic information extraction and classification. In: 2011 11th international conference on ITS telecommunications, IEEE, pp 107–112
go back to reference Wiegmann M, Kersten J, Klan F, Potthast M, Stein B (2020) Analysis of detection models for disaster-related tweets. Anal Detect Mod Disaster-Relat Tweets, 872–880 Wiegmann M, Kersten J, Klan F, Potthast M, Stein B (2020) Analysis of detection models for disaster-related tweets. Anal Detect Mod Disaster-Relat Tweets, 872–880
go back to reference Yuan F, Liu R (2020) Mining social media data for rapid damage assessment during hurricane Matthew: feasibility study. J Comput Civil Eng 34(3):05020001CrossRef Yuan F, Liu R (2020) Mining social media data for rapid damage assessment during hurricane Matthew: feasibility study. J Comput Civil Eng 34(3):05020001CrossRef
Metadata
Title
DEES: a real-time system for event extraction from disaster-related web text
Authors
Nilani Algiriyage
Raj Prasanna
Kristin Stock
Emma E. H. Doyle
David Johnston
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-01007-2

Premium Partner