Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 1/2022

09-02-2022 | Original Paper

Defining amplifier’s gain to maximize the transmission rate in optical systems using evolutionary algorithms and swarm intelligence

Authors: Felipe C. N. O. Lima, Livisghton K. S. Araújo, Ségio A. Silva, Joaquim F. Martins-Filho, Danilo R. B. Araújo, Erick A. Barboza, Arysson S. Oliveira, Carmelo J. A. Bastos-Filho

Published in: Photonic Network Communications | Issue 1/2022

Login to get access
share
SHARE

Abstract

Optical networks are currently the only technology capable of providing extremely high data transmission rates. Because of this, systems must be increasingly efficient and immune to failures. One way to improve network efficiency is to use dynamic approaches like Adaptive Control of Operating Point, which consists of autonomously choosing the best operating point for optical amplifiers on the link, thus providing the best configuration concerning Quality of transmission. Unlike the previous works that focused on optimizing Optical Signal-To-Noise Ratio, our proposal and analysis are focused on maximizing the transmission rate. In this paper, we compare the results obtained by five different and widely used evolutionary and swarm-based algorithms in the search for maximizing the transmission rate in optical links. We have observed that the differential evolution provided the best results in the analyzed scenarios.
Literature
1.
go back to reference Huang, Y., Cho, P., Samadi, P., Bergman, K.: Power excursion mitigation for flexgrid defragmentation with machine learning. J. Opt. Commun. Netw. 10, 69–76 (2018) CrossRef Huang, Y., Cho, P., Samadi, P., Bergman, K.: Power excursion mitigation for flexgrid defragmentation with machine learning. J. Opt. Commun. Netw. 10, 69–76 (2018) CrossRef
2.
go back to reference Moura, U. C., Oliveira, J. R. F., Oliveira, J. C. R. F., César, A. C.: EDFA adaptive gain control effect analysis over an amplifier cascade in a DWDM optical system. International Microwave and Optoelectronics Conference (IMOC). 2013/SBMO IEEE MTT-S. Pg. 1–5. (2013) Moura, U. C., Oliveira, J. R. F., Oliveira, J. C. R. F., César, A. C.: EDFA adaptive gain control effect analysis over an amplifier cascade in a DWDM optical system. International Microwave and Optoelectronics Conference (IMOC). 2013/SBMO IEEE MTT-S. Pg. 1–5. (2013)
3.
go back to reference Dong, Z., Khan, F.N., Sui, Q., Zhong, K., Lu, C., Lau, A.P.T.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34, 525–543 (2016) CrossRef Dong, Z., Khan, F.N., Sui, Q., Zhong, K., Lu, C., Lau, A.P.T.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34, 525–543 (2016) CrossRef
4.
go back to reference Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009) CrossRef Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009) CrossRef
5.
go back to reference Huang, Y., Cho, P. B., Samadi, P., Bergman, K.: Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation. 2017 Optical Fiber Communications Conference and Exhibition (OFC). Pg. 1–3. (2017) Huang, Y., Cho, P. B., Samadi, P., Bergman, K.: Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation. 2017 Optical Fiber Communications Conference and Exhibition (OFC). Pg. 1–3. (2017)
6.
go back to reference Barboza, E.d.A., Bastos-Filho, C.J.A., Martins-Filho, J.F., Silva, M.J., Coelho, L.D., Moura, U.C., Oliveira, J.R.F. (2017). Local and global approaches for the adaptive control of a cascade of amplifiers. Photonic Network Communications. Vol. 33. (2017) Barboza, E.d.A., Bastos-Filho, C.J.A., Martins-Filho, J.F., Silva, M.J., Coelho, L.D., Moura, U.C., Oliveira, J.R.F. (2017). Local and global approaches for the adaptive control of a cascade of amplifiers. Photonic Network Communications. Vol. 33. (2017)
7.
go back to reference Oliveira, J.R.F., et al.: Demonstration of EDFA cognitive gain control via GMPLS for mixed modulation formats in heterogeneous optical networks. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). pg. 1–3. (2013) Oliveira, J.R.F., et al.: Demonstration of EDFA cognitive gain control via GMPLS for mixed modulation formats in heterogeneous optical networks. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). pg. 1–3. (2013)
8.
go back to reference Moura, U., et al.: Cognitive methodology for optical amplifier gain adjustment in dynamic DWDM networks. J. Lightw. Technol. 34(8), 1971–1979 (2016) CrossRef Moura, U., et al.: Cognitive methodology for optical amplifier gain adjustment in dynamic DWDM networks. J. Lightw. Technol. 34(8), 1971–1979 (2016) CrossRef
9.
go back to reference Barboza, E.D.A., Bastos-Filho, C.J.A., Martins-Filho, J.F., Moura, U., Oliveira, J..R.F.: Self-adaptive erbium-doped fiber amplifiers using machine learning. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). Pg. 1–5. (2013) Barboza, E.D.A., Bastos-Filho, C.J.A., Martins-Filho, J.F., Moura, U., Oliveira, J..R.F.: Self-adaptive erbium-doped fiber amplifiers using machine learning. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). Pg. 1–5. (2013)
10.
go back to reference Barboza, E.A., Bastos-Filho, C.J.A., Martins-Filho, J.F.: Adaptive control of optical amplifier operating point using VOA and multi-objective optimization. J. Lightwave Technol. 37(16), 3994–4000 (2019) CrossRef Barboza, E.A., Bastos-Filho, C.J.A., Martins-Filho, J.F.: Adaptive control of optical amplifier operating point using VOA and multi-objective optimization. J. Lightwave Technol. 37(16), 3994–4000 (2019) CrossRef
11.
go back to reference Smith, K., and Zhou, Y. : Optical communications. World Intellectual Property Organization. PCT/EP2017/058555. (2017) Smith, K., and Zhou, Y. : Optical communications. World Intellectual Property Organization. PCT/EP2017/058555. (2017)
12.
go back to reference Lima, F. C. N. O., Barboza, E. A., Bastos-Filho, C. J. A., Martins-Filho J. F.: Maximizing the Transmission Rate in Optical Systems using Swarm Intelligence. 2020 IEEE Latin-American Conference on Communications (LATINCOM), pg. 1–6 (2020) Lima, F. C. N. O., Barboza, E. A., Bastos-Filho, C. J. A., Martins-Filho J. F.: Maximizing the Transmission Rate in Optical Systems using Swarm Intelligence. 2020 IEEE Latin-American Conference on Communications (LATINCOM), pg. 1–6 (2020)
13.
go back to reference Moura, U.C., Oliveira, J.R.F., Amgarten, R.L., Paiva, G.E.R., Oliveira, J.C.R.F.: Caracterizador automatizado de máscara de potáncia de amplificadores Ópticos para redes wdm reconfiguráveis. XXX Simpósio Brasileiro de Telecomunicações. (2012) Moura, U.C., Oliveira, J.R.F., Amgarten, R.L., Paiva, G.E.R., Oliveira, J.C.R.F.: Caracterizador automatizado de máscara de potáncia de amplificadores Ópticos para redes wdm reconfiguráveis. XXX Simpósio Brasileiro de Telecomunicações. (2012)
14.
go back to reference Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30, 3857–3879 (2012) CrossRef Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30, 3857–3879 (2012) CrossRef
15.
go back to reference Simon, D.: Evolutionary optimization algorithms-biologicallyinspired and population-based approaches tocomputer intelligence. Wiley, Hoboken (2013) Simon, D.: Evolutionary optimization algorithms-biologicallyinspired and population-based approaches tocomputer intelligence. Wiley, Hoboken (2013)
16.
go back to reference Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. CEC 2010, 4138–4325 (2010) Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. CEC 2010, 4138–4325 (2010)
17.
go back to reference Bilala, M.P., Zaheer, H., Garcia-Hernandez, L., Abraham A.: Differential evolution: a review of more than two decades of research. Engineering Applications of Artificial Intelligence, vol. 90. (2020) Bilala, M.P., Zaheer, H., Garcia-Hernandez, L., Abraham A.: Differential evolution: a review of more than two decades of research. Engineering Applications of Artificial Intelligence, vol. 90. (2020)
18.
go back to reference Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014) CrossRef Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014) CrossRef
Metadata
Title
Defining amplifier’s gain to maximize the transmission rate in optical systems using evolutionary algorithms and swarm intelligence
Authors
Felipe C. N. O. Lima
Livisghton K. S. Araújo
Ségio A. Silva
Joaquim F. Martins-Filho
Danilo R. B. Araújo
Erick A. Barboza
Arysson S. Oliveira
Carmelo J. A. Bastos-Filho
Publication date
09-02-2022
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2022
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00968-w