Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRENGTH AND PLASTICITY

Deformation Behavior of Nickel-Based Superalloy Predicted by Spherical Representative Volume Element Approach

Author: Srihari Dodla

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

Nickel-based superalloys are widely used for structural applications due to their excellent mechanical properties and very good corrosion resistance. In the present study, the texture and the deformation behavior of heat-treated nickel-based superalloys (Inconel 718) were examined. The initial textures are characterized by the EBSD measurements and they are correlated with the deformation behavior. The mechanical behavior of Inconel 718 is predicted by three-dimensional finite element simulations. Numerical finite element simulations are compared and validated with the experimental results.
Literature
1.
go back to reference A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A. K. Koul, “Microstructural characteristics of forged and heat treated Inconel-718 disks,” Mater. Des. 52, 791–800 (2013). CrossRef A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A. K. Koul, “Microstructural characteristics of forged and heat treated Inconel-718 disks,” Mater. Des. 52, 791–800 (2013). CrossRef
2.
go back to reference A. Thomas, M. EI-Wahabi, J. M. Cabrera, and J. M. Prado, “High temperature deformation of Inconel 718,” J. Mater. Process. Technol. 177, 469–472 (2006). CrossRef A. Thomas, M. EI-Wahabi, J. M. Cabrera, and J. M. Prado, “High temperature deformation of Inconel 718,” J. Mater. Process. Technol. 177, 469–472 (2006). CrossRef
3.
go back to reference T. Antonsson and H. Fredriksson, “The effect of cooling rate on the solidification of inconel 718,” Metall. Mater. Trans. B 36, 85–96 (2005). CrossRef T. Antonsson and H. Fredriksson, “The effect of cooling rate on the solidification of inconel 718,” Metall. Mater. Trans. B 36, 85–96 (2005). CrossRef
4.
go back to reference T. Antonsson and H. Fredriksson, “Lower temperature deformation mechanisms in a γ''-strengthened Ni-base superalloy,” Scr. Mater. 115, 108–112 (2016). CrossRef T. Antonsson and H. Fredriksson, “Lower temperature deformation mechanisms in a γ''-strengthened Ni-base superalloy,” Scr. Mater. 115, 108–112 (2016). CrossRef
5.
go back to reference Srihari Dodla, “Experimental characterization and numerical simulation of Inconel 718 under large plastic deformation,” in Proceedings of the 7th International Conference on Computational Methods (ICCM2016) (University of California, Berkeley, CA, 2016). Srihari Dodla, “Experimental characterization and numerical simulation of Inconel 718 under large plastic deformation,” in Proceedings of the 7th International Conference on Computational Methods (ICCM2016) (University of California, Berkeley, CA, 2016).
6.
go back to reference A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. M. Molina-Aldareguia, J. Llorca, and J. Segurado, “Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization,” Acta Mater. 98, 242–253 (2015). CrossRef A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. M. Molina-Aldareguia, J. Llorca, and J. Segurado, “Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization,” Acta Mater. 98, 242–253 (2015). CrossRef
7.
go back to reference M. Dehmas, J. Lacaze, N. Niang, and B. Viguier, “TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy,” Adv. Mater. Sci. Eng. 2011, 1–9 (2011). CrossRef M. Dehmas, J. Lacaze, N. Niang, and B. Viguier, “TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy,” Adv. Mater. Sci. Eng. 2011, 1–9 (2011). CrossRef
8.
go back to reference C. M. Kuo, Y. T. Yang, H. Y. Bor, C. N. Wei, and C. C. Tai, “Aging effects on the microstructure and creep behavior of Inconel 718 superalloy,” Mater. Sci. Eng., A 510– 511, 289–294 (2009). CrossRef C. M. Kuo, Y. T. Yang, H. Y. Bor, C. N. Wei, and C. C. Tai, “Aging effects on the microstructure and creep behavior of Inconel 718 superalloy,” Mater. Sci. Eng., A 510511, 289–294 (2009). CrossRef
9.
go back to reference M. Preuss, P. J. Withers, and G. J. Baxter, “A comparison of inertia friction welds in three nickel base superalloys,” Mater. Sci. Eng., A 437, 38–45 (2006). CrossRef M. Preuss, P. J. Withers, and G. J. Baxter, “A comparison of inertia friction welds in three nickel base superalloys,” Mater. Sci. Eng., A 437, 38–45 (2006). CrossRef
10.
go back to reference M. Fisk and A. Lundbäck, “Simulation and validation of repair welding and heat treatment of an alloy 718 plate,” Finite Elem. Anal. Des. 58, 66–73 (2012). CrossRef M. Fisk and A. Lundbäck, “Simulation and validation of repair welding and heat treatment of an alloy 718 plate,” Finite Elem. Anal. Des. 58, 66–73 (2012). CrossRef
11.
go back to reference R. Gluege, M. Weber, and A. Bertram, “Comparison of spherical and cubical statistical volume elements with respect to convergence, anisotropy and localization behavior,” Comput. Mater. Sci. 63, 91–104 (2012). CrossRef R. Gluege, M. Weber, and A. Bertram, “Comparison of spherical and cubical statistical volume elements with respect to convergence, anisotropy and localization behavior,” Comput. Mater. Sci. 63, 91–104 (2012). CrossRef
13.
go back to reference Srihari Dodla, “Comparison of lamellar nanostructured cubical and spherical statistical volume elements in terms of crystallographic texture and deformation behavior,” IOP Conf. Ser.: Mater. Sci. Eng. 912, 052001 (2020). Srihari Dodla, “Comparison of lamellar nanostructured cubical and spherical statistical volume elements in terms of crystallographic texture and deformation behavior,” IOP Conf. Ser.: Mater. Sci. Eng. 912, 052001 (2020).
14.
go back to reference Srihari Dodla, “Microstructural investigations and numerical simulations of polycrystalline Nickel,” Phys. Met. Metallogr. 121, 1418–1423 (2020). CrossRef Srihari Dodla, “Microstructural investigations and numerical simulations of polycrystalline Nickel,” Phys. Met. Metallogr. 121, 1418–1423 (2020). CrossRef
15.
go back to reference A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 3rd ed. (Springer, Berlin, 2012). CrossRef A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 3rd ed. (Springer, Berlin, 2012). CrossRef
16.
go back to reference Srihari Dodla, A. Bertram, and M. Krüger, “Finite element simulations of lamellar copper-silver composites,” Comput. Mater. Sci. 101, 29–38 (2015). CrossRef Srihari Dodla, A. Bertram, and M. Krüger, “Finite element simulations of lamellar copper-silver composites,” Comput. Mater. Sci. 101, 29–38 (2015). CrossRef
17.
go back to reference S. Dodla and A. Bertram, “Numerical study of the deformation behavior of eutectic Cu/Ag polycrystals,” Tech. Mech. 36 (3), 155–165 (2016). S. Dodla and A. Bertram, “Numerical study of the deformation behavior of eutectic Cu/Ag polycrystals,” Tech. Mech. 36 (3), 155–165 (2016).
18.
go back to reference J. Hutchinson, “Bounds and self-consistent estimates for creep of polycrystalline materials,” Proc. R. Soc. Lond., A 348, 101–127 (1976). CrossRef J. Hutchinson, “Bounds and self-consistent estimates for creep of polycrystalline materials,” Proc. R. Soc. Lond., A 348, 101–127 (1976). CrossRef
19.
go back to reference E. Voce, “A practical strain-hardening function,” Metallurgia 51, 219–226 (1955). E. Voce, “A practical strain-hardening function,” Metallurgia 51, 219–226 (1955).
20.
go back to reference R. Hill, “Generalized constitutive relations for incremental deformation of metal crystals by multislip,” J. Mech. Phys. Solids 14, 95–102 (1966). CrossRef R. Hill, “Generalized constitutive relations for incremental deformation of metal crystals by multislip,” J. Mech. Phys. Solids 14, 95–102 (1966). CrossRef
21.
go back to reference S. Kurma and S. K. Kurtz, “Simulation of material microstructure using a 3D voronoi tesselation: calculation of effective thermal expansion coefficient of polycrystalline materials,” Acta Metall. Mater. 42, 3917–3927 (1994). CrossRef S. Kurma and S. K. Kurtz, “Simulation of material microstructure using a 3D voronoi tesselation: calculation of effective thermal expansion coefficient of polycrystalline materials,” Acta Metall. Mater. 42, 3917–3927 (1994). CrossRef
22.
go back to reference J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbrow, “The minpack project,” in Sources and Development of Mathematical Software, Ed. by W. J. Cowell (Prentice-Hall, Englewood Cliffs, NJ, 1984). J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbrow, “The minpack project,” in Sources and Development of Mathematical Software, Ed. by W. J. Cowell (Prentice-Hall, Englewood Cliffs, NJ, 1984).
23.
go back to reference T. Esmaiel, The Effect of Strain Hardening on Subgrain Formation in FCC Crystals during Equal Channel Angular Pressing (Docupoint Verlag, Barleben, 2016). T. Esmaiel, The Effect of Strain Hardening on Subgrain Formation in FCC Crystals during Equal Channel Angular Pressing (Docupoint Verlag, Barleben, 2016).
Metadata
Title
Deformation Behavior of Nickel-Based Superalloy Predicted by Spherical Representative Volume Element Approach
Author
Srihari Dodla
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140064