Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

22-07-2022

Deformation Mechanics of Fiber-Reinforced Plastic Specimens in Tensile and Compression Tests 1. Theoretical and Experimental Methods for Determining the Mechanical Characteristics and the Parameters of Stress-Strain State

Authors: V. N. Paimushin, R. K. Gazizullin, S. A. Kholmogorov, M. A. Shishov

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The theoretical and experimental methods for determining the mechanical characteristics of fiber-reinforced plastics (FRPs) based on tensile and compression tests of flat specimens with [0]s , [±90]s , and [±45]2s lay-ups are analyzed. For FRPs with [±45]2s lay-ups, relations are derived for determining the components of lamina strains and stresses in the orthotropy axes of FRP monolayer in terms of axial strains and Poisson ratios of specimens measured in experiments. They are based on an analysis of geometric strain patterns and physical relations on the assumption that, in a cross-ply FRP, two adjacent layers with [±φ] structures can be considered as one symmetrically reinforced layer with orthotropic properties. Numerical experiments for determining the parameters of the stress-strain state of specimens consisting of two laminas of a unidirectional fiber-reinforced plastics with a [±45]2s lay-up were performed in the linear formulation of 2- and 3-D problems in the ANSYS finite-element system. The cases of tension of elongated and compression of short specimens was considered, and an analysis of the stress components forming along the fibers located in the central part and in the vicinity of specimens corner points was performed. Tensile experiments were performed on flat fiber composite specimens with a [±45]2s lay-up to determine the strain state using a contactless strain measurement system. The results obtained made it possible to indicate the zones in which, during loading, the realization and a continuous change of the internal nonclassical buckling modes of the structural elements of FRP are possible, which is apparently one of the reasons for the physically nonlinear behavior of specimens with the [±45]2s structure in tension and compression. The results obtained allowed us to point out the areas where strains localize during loading and the failure of test specimens begins. It is shown that, in tension (compression) of the specimens with a [±45]2s lay-up, the fibers in the composite are under not only tangential, but also axial tensile (compressive) stresses. It is found that, in the orthotropy axes of each lamina, the axial tensile stresses significantly exceed in magnitude the transverse ones, which can be neglected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2018).CrossRef V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2018).CrossRef
2.
go back to reference A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., No. 92, 295-305 (2010). A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., No. 92, 295-305 (2010).
3.
go back to reference J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. sci. Technol., 71, 1242-1249 (2011).CrossRef J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. sci. Technol., 71, 1242-1249 (2011).CrossRef
4.
go back to reference K. Niu and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids Struct., 37, No. 17, 2405-2428 (2000).CrossRef K. Niu and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids Struct., 37, No. 17, 2405-2428 (2000).CrossRef
5.
go back to reference N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef
6.
go back to reference P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Math. Mech. Solids., 21, No. 6, 667-684 (2016).CrossRef P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Math. Mech. Solids., 21, No. 6, 667-684 (2016).CrossRef
7.
go back to reference P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef
8.
go back to reference S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modeling,” Compos. Sci. Technol., 69, Nos. 7-8, 948-955 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modeling,” Compos. Sci. Technol., 69, Nos. 7-8, 948-955 (2009).CrossRef
9.
go back to reference A. V. Kondratiev, V. E. Gaidachuk, and M. E. Kharchenko, “Relationships between the ultimate strengths of polymers in static bending, compression, and tension,” Mech. Compos. Mater., 55, No. 2, 367-378 (2019).CrossRef A. V. Kondratiev, V. E. Gaidachuk, and M. E. Kharchenko, “Relationships between the ultimate strengths of polymers in static bending, compression, and tension,” Mech. Compos. Mater., 55, No. 2, 367-378 (2019).CrossRef
10.
go back to reference O. Allix, N. Feld, E. Baranger, J.-M. Guimard, and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: modeling across the scales,” Meccanica., 49, No. 11, 2571-2586 (2014).CrossRef O. Allix, N. Feld, E. Baranger, J.-M. Guimard, and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: modeling across the scales,” Meccanica., 49, No. 11, 2571-2586 (2014).CrossRef
11.
go back to reference A. N. Polilov, Etudes on the Mechanics of Composites [in Russian], M., Fizmatlit, (2015). A. N. Polilov, Etudes on the Mechanics of Composites [in Russian], M., Fizmatlit, (2015).
12.
go back to reference D3518/3518M-94 (Reapproved 2001). Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate, Vol. March 15, Space Simulation; Aerospace and Aircraft; composite materials. ASTM International, West Conshohocken, PA (2005). D3518/3518M-94 (Reapproved 2001). Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate, Vol. March 15, Space Simulation; Aerospace and Aircraft; composite materials. ASTM International, West Conshohocken, PA (2005).
13.
go back to reference V. N. Paimushin, N. V. Polykova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133-144 (2018).CrossRef V. N. Paimushin, N. V. Polykova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133-144 (2018).CrossRef
14.
go back to reference V. N. Paimushin, R. K. Gazizullin, and M. A. Shishov, “Flat internal buckling modes of fibrous composite elements under tension and compression at the mini- and microscale,” J. App. Mech. Tech. Phys., 60, No. 3, 548-559 (2019).CrossRef V. N. Paimushin, R. K. Gazizullin, and M. A. Shishov, “Flat internal buckling modes of fibrous composite elements under tension and compression at the mini- and microscale,” J. App. Mech. Tech. Phys., 60, No. 3, 548-559 (2019).CrossRef
15.
go back to reference V. V. Novozhilov, Theory of Elasticity [in Russian], L., Sudpromgiz (1958). V. V. Novozhilov, Theory of Elasticity [in Russian], L., Sudpromgiz (1958).
16.
go back to reference V. N. Paimushin, R. A. Kayumov, and S. A. Kholmogorov, “Deformation features and models of [±45]2s cross-ply fiber-reinforced plastics in tension,” Mech. Compos. Mater., 55, No. 2, 141-154 (2019).CrossRef V. N. Paimushin, R. A. Kayumov, and S. A. Kholmogorov, “Deformation features and models of [±45]2s cross-ply fiber-reinforced plastics in tension,” Mech. Compos. Mater., 55, No. 2, 141-154 (2019).CrossRef
17.
go back to reference V. N. Paimushin, R. K. Gazizullin, and M. A. Shishov, “Spatial buckling modes of a fiber (fiber bundle) of composites with a [±45]2s stacking sequence under the tension and compression of test specimens,” Mech. Compos. Mater., 55, No. 6, 743-760 (2020).CrossRef V. N. Paimushin, R. K. Gazizullin, and M. A. Shishov, “Spatial buckling modes of a fiber (fiber bundle) of composites with a [±45]2s stacking sequence under the tension and compression of test specimens,” Mech. Compos. Mater., 55, No. 6, 743-760 (2020).CrossRef
18.
go back to reference A. Hajlane and J. Varna, “Identification of a model of transverse viscoplastic deformation for a UD composite from curvature changes of unsymmetric cross-ply specimens,” Mech. Compos. Mater., 55, No. 3, 519-552 (2019).CrossRef A. Hajlane and J. Varna, “Identification of a model of transverse viscoplastic deformation for a UD composite from curvature changes of unsymmetric cross-ply specimens,” Mech. Compos. Mater., 55, No. 3, 519-552 (2019).CrossRef
19.
go back to reference K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of glass fibre/vinylester noncrimp fabric [±45]s laminates,” J. Reinf. Plast. compos., 30, No. 12, 1015-1028 (2011).CrossRef K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of glass fibre/vinylester noncrimp fabric [±45]s laminates,” J. Reinf. Plast. compos., 30, No. 12, 1015-1028 (2011).CrossRef
20.
go back to reference K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Compos. Part A: Appl. Sci. Manufacturing., No. 62, 67-76 (2014). K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Compos. Part A: Appl. Sci. Manufacturing., No. 62, 67-76 (2014).
21.
go back to reference A. N. Guz, Stability of Elastic Bodies at Finite Deformations [in Russian], Kiev, Naukova Dumka (1973). A. N. Guz, Stability of Elastic Bodies at Finite Deformations [in Russian], Kiev, Naukova Dumka (1973).
22.
go back to reference A. N. Guz and V. A. Dekret, “Finite size fiber model in the three-dimensional stability theory of composite materials (review),” Prikl. Mechanika., 52, No. 1, 3-77 (2016). A. N. Guz and V. A. Dekret, “Finite size fiber model in the three-dimensional stability theory of composite materials (review),” Prikl. Mechanika., 52, No. 1, 3-77 (2016).
23.
go back to reference A. N. Guz, “On the construction of the fundamentals of fracture mechanics of materials under compression along cracks (review),” Prikl. Mechanika., 50, No. 1, 5-89 (2014). A. N. Guz, “On the construction of the fundamentals of fracture mechanics of materials under compression along cracks (review),” Prikl. Mechanika., 50, No. 1, 5-89 (2014).
24.
go back to reference V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], M., Mashinostroenie (1980). V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], M., Mashinostroenie (1980).
25.
go back to reference B. W. Rosen, “Mechanics of composite strengthening,” Fiber Composite Materials / Proc. Am. soc. Metals, USA, 574-586 (1965). B. W. Rosen, “Mechanics of composite strengthening,” Fiber Composite Materials / Proc. Am. soc. Metals, USA, 574-586 (1965).
26.
go back to reference B. Budiansky, and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. solids., 41, No. 1, 183-211 (1993).CrossRef B. Budiansky, and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. solids., 41, No. 1, 183-211 (1993).CrossRef
27.
go back to reference Li Xu Yong and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. mater., 27, No. 6, 572-588 (1993).CrossRef Li Xu Yong and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. mater., 27, No. 6, 572-588 (1993).CrossRef
28.
go back to reference N. A. Abrosimov, A. V. Elesin, and L. A. Igumnov, “Numerical simulation of the process of loss of stability of composite cylindrical shells under combined quasi-static and dynamic actions,” Mech. Compos. Mater., 55, No. 1, 61-76 (2019).CrossRef N. A. Abrosimov, A. V. Elesin, and L. A. Igumnov, “Numerical simulation of the process of loss of stability of composite cylindrical shells under combined quasi-static and dynamic actions,” Mech. Compos. Mater., 55, No. 1, 61-76 (2019).CrossRef
29.
go back to reference G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. sci. Techn., 51, No. 1, 95-109 (1994).CrossRef G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. sci. Techn., 51, No. 1, 95-109 (1994).CrossRef
30.
go back to reference N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, No. 3, 299-308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, No. 3, 299-308 (1999).CrossRef
31.
go back to reference A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295-305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295-305 (2010).CrossRef
32.
go back to reference V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “Mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers,” Mech. Compos. Mater., 53, No. 6, 737-752 (2017).CrossRef V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “Mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers,” Mech. Compos. Mater., 53, No. 6, 737-752 (2017).CrossRef
33.
go back to reference V. N. Paimushin and V. I. Shalashilin, “On relationships in the theory of deformations in the quadratic approximation and problems of constructing refined variants of the geometrically nonlinear theory of layered structural elements,” Prikl. Matematika and Mekhanika, 69, No. 5, 861-881 (2005). V. N. Paimushin and V. I. Shalashilin, “On relationships in the theory of deformations in the quadratic approximation and problems of constructing refined variants of the geometrically nonlinear theory of layered structural elements,” Prikl. Matematika and Mekhanika, 69, No. 5, 861-881 (2005).
34.
go back to reference V. N. Paimushin, S. A. Kholmogorov, M. V. Makarov, D. V. Tarlakovskii, and A. Lukaszewicz Mechanics of fiber composites: forms of loss of stability and fracture of test specimens resulting from three-point bending tests,” Z. Angew. Math. Mech., 99, No. 1. (2019) art. no. e201800063. doi:https://doi.org/10.1002/zamm.201800063 V. N. Paimushin, S. A. Kholmogorov, M. V. Makarov, D. V. Tarlakovskii, and A. Lukaszewicz Mechanics of fiber composites: forms of loss of stability and fracture of test specimens resulting from three-point bending tests,” Z. Angew. Math. Mech., 99, No. 1. (2019) art. no. e201800063. doi:https://​doi.​org/​10.​1002/​zamm.​201800063
35.
go back to reference V. V. Vasiliev, Mechanics of Constructions from Composite Materials [in Russian], M., Mashinostroenie (1988). V. V. Vasiliev, Mechanics of Constructions from Composite Materials [in Russian], M., Mashinostroenie (1988).
36.
go back to reference B. W. Rosen, “A Simple procedure for experimental determination of the longitudinal shear modulus of unidirectional composites,” J. Compos. Mater., 6, 552-554 (1972).CrossRef B. W. Rosen, “A Simple procedure for experimental determination of the longitudinal shear modulus of unidirectional composites,” J. Compos. Mater., 6, 552-554 (1972).CrossRef
Metadata
Title
Deformation Mechanics of Fiber-Reinforced Plastic Specimens in Tensile and Compression Tests 1. Theoretical and Experimental Methods for Determining the Mechanical Characteristics and the Parameters of Stress-Strain State
Authors
V. N. Paimushin
R. K. Gazizullin
S. A. Kholmogorov
M. A. Shishov
Publication date
22-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10038-x

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners