Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2022

25-01-2022

Deformation of an Elastic Circular Sandwich Plate in a Neutron Flow

Authors: E. I. Starovoitov, D. V. Leonenko

Published in: Mechanics of Composite Materials | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The deformation of an elastic circular three-layer plate with an asymmetric thickness under neutron irradiation is considered. To describe the kinematics of the package, polyline hypotheses are used. In the thin load-carrying layers, Kirchhoff’s hypotheses are assumed. In a relatively thick aggregate with an incompressible thickness, the Timoshenko hypothesis of straightness and incompressibility of the deformed normal is employed. The operation of filler in the tangential direction is taken into account, and the corresponding boundary-value problem is formulated. A system of differential equilibrium equations is obtained by the Lagrange variational method, and boundary conditions on the plate contour are formulated. The solution of the boundary-value problem is reduced to finding three desired functions: the deflection, shear, and radial displacement of the median plane of the filler. An inhomogeneous system of ordinary linear differential equations is written for these functions. The boundary conditions prescribed correspond to the spherical support of plate contour, and its numerical parametric analysis is carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. I. Starovoitov, D. V. Leonenko, and and D. V. Tarlakovsky, “Resonance vibrations of circular composite plates on an elastic foundation,” Mech. Compos. Mater., 51, No. 5, 561-570 (2015). E. I. Starovoitov, D. V. Leonenko, and and D. V. Tarlakovsky, “Resonance vibrations of circular composite plates on an elastic foundation,” Mech. Compos. Mater., 51, No. 5, 561-570 (2015).
2.
go back to reference E. I. Starovoitov, V. D. Kubenko, and D. V. Tarlakovskii, “Vibrations of circular sandwich plates connected with an elastic foundation,” Russian Aeronautics., 52, No. 2, 151-157 (2009).CrossRef E. I. Starovoitov, V. D. Kubenko, and D. V. Tarlakovskii, “Vibrations of circular sandwich plates connected with an elastic foundation,” Russian Aeronautics., 52, No. 2, 151-157 (2009).CrossRef
3.
go back to reference E. I. Starovoitov and D.V. Leonenko Vibrations of circular composite plates on an elastic foundation under the action of local loads,” Mech. Compos. Mater., 52, No. 5, 665-672 (2016). E. I. Starovoitov and D.V. Leonenko Vibrations of circular composite plates on an elastic foundation under the action of local loads,” Mech. Compos. Mater., 52, No. 5, 665-672 (2016).
4.
go back to reference E. I. Starovoitov and D. V. Leonenko, “Impact of thermal and ionizing radiation on a circular sandwich plate on an elastic foundation,” Int. Appl. Mech., 47, No. 5, 580-589 (2011).CrossRef E. I. Starovoitov and D. V. Leonenko, “Impact of thermal and ionizing radiation on a circular sandwich plate on an elastic foundation,” Int. Appl. Mech., 47, No. 5, 580-589 (2011).CrossRef
5.
go back to reference E. Yu. Mikhailova and G. V. Fedotenkov, “Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction),” Mech. Solids, 46, No. 2, 239-247 (2011).CrossRef E. Yu. Mikhailova and G. V. Fedotenkov, “Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction),” Mech. Solids, 46, No. 2, 239-247 (2011).CrossRef
6.
go back to reference G. V. Fedotenkov and D. V. Tarlakovskiy, “Analytic investigation of features of stresses in plane nonstationary contact problems with moving boundaries,” J. Math. Sci., 162, No. 2, 246-253 (2009).CrossRef G. V. Fedotenkov and D. V. Tarlakovskiy, “Analytic investigation of features of stresses in plane nonstationary contact problems with moving boundaries,” J. Math. Sci., 162, No. 2, 246-253 (2009).CrossRef
7.
go back to reference I. Ivañez, M. M. Moure, S. K. Garcia-Castillo, and S. Sanchez-Saez, “The oblique impact response of composite sandwich plates,” Compos. Struct., No. 133, 1127-1136 (2015). I. Ivañez, M. M. Moure, S. K. Garcia-Castillo, and S. Sanchez-Saez, “The oblique impact response of composite sandwich plates,” Compos. Struct., No. 133, 1127-1136 (2015).
8.
go back to reference D. V. Tarlakovskii and G. V. Fedotenkov, “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells,” J. Machinery Manufacture and Reliability, 43, No. 2, 145-152 (2014).CrossRef D. V. Tarlakovskii and G. V. Fedotenkov, “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells,” J. Machinery Manufacture and Reliability, 43, No. 2, 145-152 (2014).CrossRef
9.
go back to reference Ye. M. Suvorov, D. V. Tarlakovskii, and G. V. Fedotenkov, “The plane problem of the impact of a rigid body on a halfspace modelled by a Cosserat medium.,” J. Appl. Math. Mech., 76, No. 5, 511-518 (2012). Ye. M. Suvorov, D. V. Tarlakovskii, and G. V. Fedotenkov, “The plane problem of the impact of a rigid body on a halfspace modelled by a Cosserat medium.,” J. Appl. Math. Mech., 76, No. 5, 511-518 (2012).
10.
go back to reference V. N. Paimushin and R. K. Gazizullin, “Static and monoharmonic acoustic impact on a laminated plate,” Mech. Compos. Mater., 53, No. 3, 407-436 (2017).CrossRef V. N. Paimushin and R. K. Gazizullin, “Static and monoharmonic acoustic impact on a laminated plate,” Mech. Compos. Mater., 53, No. 3, 407-436 (2017).CrossRef
11.
go back to reference V. N. Paimushin, V. A. Firsov, and V. M. Shishkin, “Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping,” Mech. Compos. Mater., 53, No. 4, 609-630 (2017).CrossRef V. N. Paimushin, V. A. Firsov, and V. M. Shishkin, “Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping,” Mech. Compos. Mater., 53, No. 4, 609-630 (2017).CrossRef
12.
go back to reference T. P. Romanova, “Modeling the dynamic bending of rigid-plastic hybrid composite elliptical plates with a rigid insert,” Mech. Compos. Mater., 53, No. 5, 809-828 (2017).CrossRef T. P. Romanova, “Modeling the dynamic bending of rigid-plastic hybrid composite elliptical plates with a rigid insert,” Mech. Compos. Mater., 53, No. 5, 809-828 (2017).CrossRef
13.
go back to reference V. N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour,” Mech. Compos. Mater., 53, No. 1, 3-26 (2017).CrossRef V. N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour,” Mech. Compos. Mater., 53, No. 1, 3-26 (2017).CrossRef
14.
go back to reference L. Škec and G. Jelenić, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection,” Acta Mech., 225, No. 2, 523-541 (2014).CrossRef L. Škec and G. Jelenić, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection,” Acta Mech., 225, No. 2, 523-541 (2014).CrossRef
15.
go back to reference J. Belinha and L. M. Dints, “Nonlinear analysis of plates and laminates using the element free Galerkin method,” Compos. Struct., 78, No. 3, 337-350 (2007). 16. Zh. Wang, G. Lu, F. Zhu, and L. Zhao, “Load-carrying capacity of circular sandwich plates at large deflection,” J. Eng. Mech., 143, No. 9 (2017). J. Belinha and L. M. Dints, “Nonlinear analysis of plates and laminates using the element free Galerkin method,” Compos. Struct., 78, No. 3, 337-350 (2007). 16. Zh. Wang, G. Lu, F. Zhu, and L. Zhao, “Load-carrying capacity of circular sandwich plates at large deflection,” J. Eng. Mech., 143, No. 9 (2017).
17.
go back to reference K. T. Takele, “Interfacial strain energy continuity assumption-based analysis of an orthotropic sandwich plate using a refined layer-by-layer theory,” Mech. Compos. Mater., 54, No. 3, 419-444 (2018).CrossRef K. T. Takele, “Interfacial strain energy continuity assumption-based analysis of an orthotropic sandwich plate using a refined layer-by-layer theory,” Mech. Compos. Mater., 54, No. 3, 419-444 (2018).CrossRef
18.
go back to reference H. V. Zadeh and M. Tahani, “Analytical bending analysis of a circular sandwich plate under distributed load,” Int. J. of Recent Adv. Mech. Eng., 6, No. 1 (2017). H. V. Zadeh and M. Tahani, “Analytical bending analysis of a circular sandwich plate under distributed load,” Int. J. of Recent Adv. Mech. Eng., 6, No. 1 (2017).
19.
go back to reference T. P. Romanova and A. P. Yankovskii, “Constructing yield loci for rigid-plastic reinforced plates considering the 2d stress state in fibers,” Mech. Compos. Mater., 54, No. 6, 697-718 (2019).CrossRef T. P. Romanova and A. P. Yankovskii, “Constructing yield loci for rigid-plastic reinforced plates considering the 2d stress state in fibers,” Mech. Compos. Mater., 54, No. 6, 697-718 (2019).CrossRef
20.
go back to reference T. P. Romanova and A. P. Yankovskii, “Yield loci of reinforced plates made from rigid-plastic unequiresistant materials considering the two-dimensional stress state in fibers 1. Unidirectional reinforcement,” Mech. Compos. Mater., 55, No. 6, 699-714 (2020).CrossRef T. P. Romanova and A. P. Yankovskii, “Yield loci of reinforced plates made from rigid-plastic unequiresistant materials considering the two-dimensional stress state in fibers 1. Unidirectional reinforcement,” Mech. Compos. Mater., 55, No. 6, 699-714 (2020).CrossRef
21.
go back to reference L. Yang, O. Harrysson, H. West, and D. A. Cormier, “Comparison of bending properties for cellular core sandwich panels,” Mater. Sci. Appl., 4, No. 8, 471-477 (2013). L. Yang, O. Harrysson, H. West, and D. A. Cormier, “Comparison of bending properties for cellular core sandwich panels,” Mater. Sci. Appl., 4, No. 8, 471-477 (2013).
22.
go back to reference C. R. Lee, S. J. Sun, and Т. Y. Каm, “System parameters evaluation of flexibly supported laminated composite sandwich plates,” AIAA J., 45, No. 9, 2312-2322 (2007).CrossRef C. R. Lee, S. J. Sun, and Т. Y. Каm, “System parameters evaluation of flexibly supported laminated composite sandwich plates,” AIAA J., 45, No. 9, 2312-2322 (2007).CrossRef
23.
go back to reference D. Julien and S. Karam, “Limit analysis of multi-layered plates. Pt. I: The homogenesized Love–Kirchhoff model,” J. Mech. Phys. Solids., 56, No. 2, 561-580 (2008).CrossRef D. Julien and S. Karam, “Limit analysis of multi-layered plates. Pt. I: The homogenesized Love–Kirchhoff model,” J. Mech. Phys. Solids., 56, No. 2, 561-580 (2008).CrossRef
24.
go back to reference Z. Xie, “An approximate solution to the plastic indentation of circular sandwich panels,” Mech. Compos. Mater., 54, No. 2, 361-370 (2018).CrossRef Z. Xie, “An approximate solution to the plastic indentation of circular sandwich panels,” Mech. Compos. Mater., 54, No. 2, 361-370 (2018).CrossRef
25.
go back to reference A. Kudin, M. A. V. Al-Omari, B. G. M. Al-Athamneh, and H. K. M. Al-Athamneh, “Bending and buckling of circular sandwich plates with the nonlinear elastic core material,” Int. J. Mech. Eng. Inform. Technol., 3, No. 8, 1487-1493 (2015). A. Kudin, M. A. V. Al-Omari, B. G. M. Al-Athamneh, and H. K. M. Al-Athamneh, “Bending and buckling of circular sandwich plates with the nonlinear elastic core material,” Int. J. Mech. Eng. Inform. Technol., 3, No. 8, 1487-1493 (2015).
26.
go back to reference A. P. Yankovskii, “Refined modeling of flexural deformation of layered plates with a regular structure made from nonlinear hereditary materials,” Mech. Compos. Mater., 53, No. 6, 1015-1042 (2017). A. P. Yankovskii, “Refined modeling of flexural deformation of layered plates with a regular structure made from nonlinear hereditary materials,” Mech. Compos. Mater., 53, No. 6, 1015-1042 (2017).
27.
go back to reference V. V. Moskvitin and E. I. Starovoitov, “Deformation and variable loading of two-layer metal-polymer plates,” Mech. Compos. Mater., 21, No. 3, 267-273 (1985).CrossRef V. V. Moskvitin and E. I. Starovoitov, “Deformation and variable loading of two-layer metal-polymer plates,” Mech. Compos. Mater., 21, No. 3, 267-273 (1985).CrossRef
28.
go back to reference E. I. Starovoitov, D. V. Leonenko, and M. Suleyman, “Deformation of a composite plate on an elastic foundation by local loads,” Mech. Compos. Mater., 43, No. 1, 75-84 (2007).CrossRef E. I. Starovoitov, D. V. Leonenko, and M. Suleyman, “Deformation of a composite plate on an elastic foundation by local loads,” Mech. Compos. Mater., 43, No. 1, 75-84 (2007).CrossRef
29.
go back to reference A. M. Zenkour and N. A. Alghamdi, “Thermomechanical bending response of functionally graded nonsymmetric sandwich plates,” J. Sandwich Struct. Mater., 12, No. 1, 7-46 (2009).CrossRef A. M. Zenkour and N. A. Alghamdi, “Thermomechanical bending response of functionally graded nonsymmetric sandwich plates,” J. Sandwich Struct. Mater., 12, No. 1, 7-46 (2009).CrossRef
30.
go back to reference A. M. Zenkour and N. A. Alghamdi, “Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads,” Mech. Adv. Mater. Struct., 17, No. 6, 419-432 (2010).CrossRef A. M. Zenkour and N. A. Alghamdi, “Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads,” Mech. Adv. Mater. Struct., 17, No. 6, 419-432 (2010).CrossRef
31.
go back to reference E. I. Starovoitov, D. V. Leonenko, and D. V. Tarlakovskii, “Thermoelastic deformation of a circular sandwich plate by local loads,” Mech. Compos. Mater., 54, No. 3, 299-312 (2018).CrossRef E. I. Starovoitov, D. V. Leonenko, and D. V. Tarlakovskii, “Thermoelastic deformation of a circular sandwich plate by local loads,” Mech. Compos. Mater., 54, No. 3, 299-312 (2018).CrossRef
32.
go back to reference E. I. Starovoitov and D. V. Leonenko, “Deformation of an elastoplastic three-layer circular plate in a temperature field,” Mech. Compos. Mater., 55, No. 4, 503-512 (2019).CrossRef E. I. Starovoitov and D. V. Leonenko, “Deformation of an elastoplastic three-layer circular plate in a temperature field,” Mech. Compos. Mater., 55, No. 4, 503-512 (2019).CrossRef
33.
go back to reference A. A. Ilyushin and P. M. Ogibalov, Elastoplastic Deformations of Hollow Cylinders [in Russian], Moscow: MGU Publishing House (1960). A. A. Ilyushin and P. M. Ogibalov, Elastoplastic Deformations of Hollow Cylinders [in Russian], Moscow: MGU Publishing House (1960).
35.
go back to reference E. I. Starovoitov and D. V. Leonenko, “Deformation of a three-layer rod with a compressible core in a neutron flow,” Int. Appl. Mech., 56, No. 1, 81-91 (2020).CrossRef E. I. Starovoitov and D. V. Leonenko, “Deformation of a three-layer rod with a compressible core in a neutron flow,” Int. Appl. Mech., 56, No. 1, 81-91 (2020).CrossRef
Metadata
Title
Deformation of an Elastic Circular Sandwich Plate in a Neutron Flow
Authors
E. I. Starovoitov
D. V. Leonenko
Publication date
25-01-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10001-w

Other articles of this Issue 6/2022

Mechanics of Composite Materials 6/2022 Go to the issue

Premium Partners