Skip to main content
Top
Published in: Cellulose 17/2020

06-10-2020 | Original Research

Dehydration of saccharides to anhydro-sugars in dioxane: effect of reactants, acidic strength and water removal in situ

Authors: Qi Cao, Tian Ye, Wenhui Li, Jiao Chen, Yanyu Lu, Haifeng Gan, Hongli Wu, Fei Cao, Ping Wei, Pingkai Ouyang

Published in: Cellulose | Issue 17/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dehydration of cellulose in polar aprotic solvents produces high-value anhydro-sugars, opening up a new avenue for the utilization of cellulose. However, there are still some problems that need to be solved. Herein, we selected some carbohydrates (e.g. cellulose, starch, cellobiose, maltose, methyl-β-D-glucopyranoside and methyl-α-D-glucopyranoside) to examine the influence of different glycosidic bonds and substituents on the preparation of levoglucosan (LGA). The results of LGA yields, reaction rate constants and activation energies from different saccharides show that β-glycosidic bond is more vulnerable to break, forming LGA more easily. The activation energies of the latter 4 carbohydrates are 89.9, 104.2, 93.3, 113.6 kJ/mol, respectively. The strength of acid affects the dehydration process of cellulose greatly. These acids whose pKa values are between − 3 and − 2, including p-toluenesulfonic acid, methanesulfonic acid, and sulfuric acid, can achieve the best yields of LGA and levoglucosenone (LGO). Accordingly, those acids with higher pKa value have no catalytic activity, whereas the rate of cellulose degradation using lower pKa valued acids as catalyst is too fast to be efficiently monitored and carbonization is severe. The side reaction of cellulose hydrolysis and the formation of byproducts including 5-hydroxymethylfurfural (HMF) and furfural (FF) could be suppressed effectively through the addition of phosphorus pentoxide as water absorbent into the reaction system. The molar concentration ratio of LGO and (HMF + FF + Glucose) reached 12.04, which is 105% higher than those without water absorbent. This ratio can reach 21.38 in LGA dehydration into LGO process when phosphorus pentoxide was added.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bai X, Brown RC, Fu J, Shanks BH, Kieffer M (2014) The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction. Energy Fuels 28:1111–1120 Bai X, Brown RC, Fu J, Shanks BH, Kieffer M (2014) The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction. Energy Fuels 28:1111–1120
go back to reference Boons GJ, Isles S, Setala P (1995) An improved procedure for the preparation of 1,6-anhydro sugars. Synlett 1995:755–756 Boons GJ, Isles S, Setala P (1995) An improved procedure for the preparation of 1,6-anhydro sugars. Synlett 1995:755–756
go back to reference Braden J, Bai X (2018) Production of biofuel precursor chemicals from the mixture of cellulose and polyvinylchloride in polar aprotic solvent. Waste Manag 78:894–902PubMed Braden J, Bai X (2018) Production of biofuel precursor chemicals from the mixture of cellulose and polyvinylchloride in polar aprotic solvent. Waste Manag 78:894–902PubMed
go back to reference Branca C, Galgano A, Blasi C, Esposito M, Di Blasi C (2011) H2SO4-catalyzed pyrolysis of corncobs. Energy Fuels 25:359–369 Branca C, Galgano A, Blasi C, Esposito M, Di Blasi C (2011) H2SO4-catalyzed pyrolysis of corncobs. Energy Fuels 25:359–369
go back to reference Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815 Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815
go back to reference Chen L, Zhao J, Pradhan S, Brinson BE, Scuseria GE, Zhang ZC, Wong MS (2016) Ring-locking enables selective anhydrosugar synthesis from carbohydrate pyrolysis. Green Chem 18:5438–5447 Chen L, Zhao J, Pradhan S, Brinson BE, Scuseria GE, Zhang ZC, Wong MS (2016) Ring-locking enables selective anhydrosugar synthesis from carbohydrate pyrolysis. Green Chem 18:5438–5447
go back to reference Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608 Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608
go back to reference De Bruyn M, Sener C, Petrolini DD, McClelland DJ, He J, Ball MR, Liu Y, Martins L, Dumesic JA, Huber GW, Weckhuysen BM (2019) Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chem 21:5000–5007 De Bruyn M, Sener C, Petrolini DD, McClelland DJ, He J, Ball MR, Liu Y, Martins L, Dumesic JA, Huber GW, Weckhuysen BM (2019) Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chem 21:5000–5007
go back to reference Deng W, Wang P, Wang B, Wang Y, Yan L, Li Y, Zhang Q, Cao Z, Wang Y (2018) Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(iii)–Sn(ii) catalysts. Green Chem 20:735–744 Deng W, Wang P, Wang B, Wang Y, Yan L, Li Y, Zhang Q, Cao Z, Wang Y (2018) Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(iii)–Sn(ii) catalysts. Green Chem 20:735–744
go back to reference Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153 Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153
go back to reference Ermolenko MS (2013) Convenient and efficient synthesis of 2,4-dideoxy-levoglucosan. Synth Commun 43:2841–2845 Ermolenko MS (2013) Convenient and efficient synthesis of 2,4-dideoxy-levoglucosan. Synth Commun 43:2841–2845
go back to reference Ferreira JA, Taherzadeh MJ (2019) Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol 299:122695PubMed Ferreira JA, Taherzadeh MJ (2019) Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol 299:122695PubMed
go back to reference Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558PubMed Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558PubMed
go back to reference Ghosh A, Bai XL, Brown RC (2018) Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect 3:4777–4785 Ghosh A, Bai XL, Brown RC (2018) Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect 3:4777–4785
go back to reference Ghosh A, Brown RC (2019) Factors influencing cellulosic sugar production during acid-catalyzed solvent liquefaction in 1,4-dioxane. ACS Sustain Chem Eng 7:18076–18084 Ghosh A, Brown RC (2019) Factors influencing cellulosic sugar production during acid-catalyzed solvent liquefaction in 1,4-dioxane. ACS Sustain Chem Eng 7:18076–18084
go back to reference Ghosh A, Brown RC, Bai XL (2016) Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chem 18:1023–1031 Ghosh A, Brown RC, Bai XL (2016) Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chem 18:1023–1031
go back to reference He J, Liu M, Huang K, Walker TW, Maravelias CT, Dumesic JA, Huber GW (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem 19:3642–3653 He J, Liu M, Huang K, Walker TW, Maravelias CT, Dumesic JA, Huber GW (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem 19:3642–3653
go back to reference Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S (2020) Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars: a review. Biomass Bioenerg 134:105481 Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S (2020) Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars: a review. Biomass Bioenerg 134:105481
go back to reference Krishna SH, McClelland DJ, Rashke QA, Dumesic JA, Huber GW (2018) Hydrogenation of levoglucosenone to renewable chemicals. Green Chem 20:3644–3644 Krishna SH, McClelland DJ, Rashke QA, Dumesic JA, Huber GW (2018) Hydrogenation of levoglucosenone to renewable chemicals. Green Chem 20:3644–3644
go back to reference Krishna SH, Walker TW, Dumesic JA, Huber GW (2017) Kinetics of Levoglucosenone Isomerization. ChemSusChem 10:129–138PubMed Krishna SH, Walker TW, Dumesic JA, Huber GW (2017) Kinetics of Levoglucosenone Isomerization. ChemSusChem 10:129–138PubMed
go back to reference Kuglarz M, Alvarado-Morales M, Karakashev D, Angelidaki I (2016) Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour Technol 200:639–647PubMed Kuglarz M, Alvarado-Morales M, Karakashev D, Angelidaki I (2016) Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour Technol 200:639–647PubMed
go back to reference Larnaudie V, Ferrari MD, Lareo C (2019) Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenergy 130:105394 Larnaudie V, Ferrari MD, Lareo C (2019) Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenergy 130:105394
go back to reference Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197 Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197
go back to reference Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phy Chem C 113:20097–20107 Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phy Chem C 113:20097–20107
go back to reference Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504PubMed Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504PubMed
go back to reference Liu CJ, Wang HM, Karim AM, Sun JM, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623PubMed Liu CJ, Wang HM, Karim AM, Sun JM, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623PubMed
go back to reference Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science 343:277–280PubMed Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science 343:277–280PubMed
go back to reference Mellmer MA, Alonso DM, Luterbacher JS, Gallo JMR, Dumesic JA (2014a) Effects of gamma-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem 16:4659–4662 Mellmer MA, Alonso DM, Luterbacher JS, Gallo JMR, Dumesic JA (2014a) Effects of gamma-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem 16:4659–4662
go back to reference Mellmer MA, Sener C, Gallo JM, Luterbacher JS, Alonso DM, Dumesic JA (2014b) Solvent effects in acid-catalyzed biomass conversion reactions. Angew Chem Int Ed Engl 53:11872–11875PubMed Mellmer MA, Sener C, Gallo JM, Luterbacher JS, Alonso DM, Dumesic JA (2014b) Solvent effects in acid-catalyzed biomass conversion reactions. Angew Chem Int Ed Engl 53:11872–11875PubMed
go back to reference Nguyen TY, Cai CM, Kumar R, Wyman CE (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci USA 114:11673–11678PubMedPubMedCentral Nguyen TY, Cai CM, Kumar R, Wyman CE (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci USA 114:11673–11678PubMedPubMedCentral
go back to reference Nunes LJR, Causer TP, Ciolkosz D (2020) Biomass for energy: a review on supply chain management models. Renew Sust Energ Rev 120:109658 Nunes LJR, Causer TP, Ciolkosz D (2020) Biomass for energy: a review on supply chain management models. Renew Sust Energ Rev 120:109658
go back to reference Olofsson J, Barta Z, Borjesson P, Wallberg O (2017) Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis. Biotechnol Biofuels 10:51PubMedPubMedCentral Olofsson J, Barta Z, Borjesson P, Wallberg O (2017) Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis. Biotechnol Biofuels 10:51PubMedPubMedCentral
go back to reference Oyola-Rivera O, He J, Huber GW, Dumesic JA, Cardona-Martínez N (2019) Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran. Green Chem 21:4988–4999 Oyola-Rivera O, He J, Huber GW, Dumesic JA, Cardona-Martínez N (2019) Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran. Green Chem 21:4988–4999
go back to reference Palacios-Bereche R, Ensinas A, Modesto M, Nebra S (2018) Enzymatic hydrolysis of sugarcane biomass and heat integration as enhancers of ethanol production. J Renew Mater 6:183–194 Palacios-Bereche R, Ensinas A, Modesto M, Nebra S (2018) Enzymatic hydrolysis of sugarcane biomass and heat integration as enhancers of ethanol production. J Renew Mater 6:183–194
go back to reference Rosillo-Calle F (2016) A review of biomass energy: shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945 Rosillo-Calle F (2016) A review of biomass energy: shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945
go back to reference Saavedra MMR, Fontes CHO, Freires FGM (2018) Sustainable and renewable energy supply chain: a system dynamics overview. Renew Sustain Energy Rev 82:247–259 Saavedra MMR, Fontes CHO, Freires FGM (2018) Sustainable and renewable energy supply chain: a system dynamics overview. Renew Sustain Energy Rev 82:247–259
go back to reference Sanchez DL, Kammen DM (2016) A commercialization strategy for carbon-negative energy. Nat Energy 1:15002 Sanchez DL, Kammen DM (2016) A commercialization strategy for carbon-negative energy. Nat Energy 1:15002
go back to reference Shen F, Sun S, Zhang X, Yang J, Qiu M, Qi X (2020) Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose 27:3013–3023 Shen F, Sun S, Zhang X, Yang J, Qiu M, Qi X (2020) Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose 27:3013–3023
go back to reference Sherwood J, De Bruyn M, Constantinou A, Moity L, McElroy CR, Farmer TJ, Duncan T, Raverty W, Hunt AJ, Clark JH (2014) Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem Commun 50:9650–9652 Sherwood J, De Bruyn M, Constantinou A, Moity L, McElroy CR, Farmer TJ, Duncan T, Raverty W, Hunt AJ, Clark JH (2014) Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem Commun 50:9650–9652
go back to reference Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. ChemSusChem 9:133–155PubMed Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. ChemSusChem 9:133–155PubMed
go back to reference Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197PubMed Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197PubMed
go back to reference Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR (2009) Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem 11:390–396 Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR (2009) Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem 11:390–396
go back to reference Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPS, Sydney EB (2020) Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol 299:122635PubMed Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPS, Sydney EB (2020) Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol 299:122635PubMed
go back to reference Walker TW, Chew AK, Li H, Demir B, Zhang ZC, Huber GW, Van Lehn RC, Dumesic JA (2018) Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci 11:617–628 Walker TW, Chew AK, Li H, Demir B, Zhang ZC, Huber GW, Van Lehn RC, Dumesic JA (2018) Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci 11:617–628
go back to reference Wang H, Zhu C, Li D, Liu Q, Tan J, Wang C, Cai C, Ma L (2019) Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renew Sust Energy Rev 103:227–247 Wang H, Zhu C, Li D, Liu Q, Tan J, Wang C, Cai C, Ma L (2019) Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renew Sust Energy Rev 103:227–247
go back to reference Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141PubMed Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141PubMed
go back to reference Yan L, Ma R, Wei H, Li L, Zou B, Xu Y (2019) Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Bioresour Technol 279:84–91PubMed Yan L, Ma R, Wei H, Li L, Zou B, Xu Y (2019) Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Bioresour Technol 279:84–91PubMed
go back to reference Yu J, Paterson N, Millan M (2019) The primary products of cellulose pyrolysis in the absence of extraparticle reactions. Fuel 237:911–915 Yu J, Paterson N, Millan M (2019) The primary products of cellulose pyrolysis in the absence of extraparticle reactions. Fuel 237:911–915
go back to reference Zhang J, Wang Y, Du X, Qu Y (2020) Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass. Bioresour Technol 303:122846PubMed Zhang J, Wang Y, Du X, Qu Y (2020) Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass. Bioresour Technol 303:122846PubMed
Metadata
Title
Dehydration of saccharides to anhydro-sugars in dioxane: effect of reactants, acidic strength and water removal in situ
Authors
Qi Cao
Tian Ye
Wenhui Li
Jiao Chen
Yanyu Lu
Haifeng Gan
Hongli Wu
Fei Cao
Ping Wei
Pingkai Ouyang
Publication date
06-10-2020
Publisher
Springer Netherlands
Published in
Cellulose / Issue 17/2020
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03490-2

Other articles of this Issue 17/2020

Cellulose 17/2020 Go to the issue