Skip to main content
Top

2024 | OriginalPaper | Chapter

Demand Forecasting of Highway Construction Materials Using Machine Learning Model

Authors : Rahul V. Wasekar, Gayatri S. Vyas

Published in: Advances in Environmental Sustainability, Energy and Earth Science

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global construction sector stands at a crucial juncture, necessitating eco-conscious practices to minimize environmental impact and enhance resource efficiency, with highway construction playing a significant role. In the Indian context, the urgency to adopt sustainable supply chain management practices in highway construction is pronounced, given the country’s vast infrastructure projects and environmental challenges. India’s ambitious infrastructure goals necessitate innovative approaches to ensure sustainability and resilience in highway construction projects. This study explores integrating sustainable supply chain management into highway construction, focusing on material demand forecasting. Leveraging machine learning techniques, specifically random forest regression, the research aims to transform material demand forecasting in highway construction, addressing issues such as overstocking and stockouts. By providing stakeholders with valuable insights into material demand forecasting, the study seeks to contribute to the timely completion and sustainable development of highway infrastructure projects, fostering environmentally conscious and resilient transportation networks worldwide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
10.
15.
go back to reference Suveka V, Shanmuga Priya T (2016) A review on prediction of material prices in construction projects. Int Res J Eng Technol:757–760. [Online]. Available: www.ir-jet.net Suveka V, Shanmuga Priya T (2016) A review on prediction of material prices in construction projects. Int Res J Eng Technol:757–760. [Online]. Available: www.ir-jet.net
Metadata
Title
Demand Forecasting of Highway Construction Materials Using Machine Learning Model
Authors
Rahul V. Wasekar
Gayatri S. Vyas
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-73820-3_9