Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Demand-Side Management and Electric Vehicle Integration

Authors : Carlos Bordons, Félix Garcia-Torres, Miguel A. Ridao

Published in: Model Predictive Control of Microgrids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter extends the energy management systems developed in previous chapters to the case of controllable loads and electric vehicles. EVs are loads for the microgrid but, due to their storage capability, they can also supply energy to the microgrid when needed and thus they can be considered as prosumers. An appropriate management of loads and EV charging can help improve the operation of the microgrid. The concept of Demand-Side Management (DSM) is introduced, and the main Demand Response (DR) techniques are described and illustrated. The integration of EVs in the microgrid is approached, customizing the MPC techniques to this situation and contemplating the notion of Vehicle-to-Grid (V2G). The chapter presents some simulations to illustrate load shifting and curtailment and several experiments performed in a pilot-scale microgrid to demonstrate V2G capabilities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
\(\wedge \) stands for the AND logical operator and \(\sim \) for NOT.
 
Literature
1.
go back to reference Alizadeh M, Li X, Wang Z, Scaglione A, Melton R (2012) Demand-side management in the smart grid: Information processing for the power switch. IEEE Signal Process Mag 29(5):55–67CrossRef Alizadeh M, Li X, Wang Z, Scaglione A, Melton R (2012) Demand-side management in the smart grid: Information processing for the power switch. IEEE Signal Process Mag 29(5):55–67CrossRef
2.
go back to reference Ballesteros LGM, Álvarez O, Markendahl J (2015) Quality of experience (QOE) in the smart cities context: an initial analysis. In: 2015 IEEE first international smart cities conference (ISC2), pp 1–7 Ballesteros LGM, Álvarez O, Markendahl J (2015) Quality of experience (QOE) in the smart cities context: an initial analysis. In: 2015 IEEE first international smart cities conference (ISC2), pp 1–7
3.
go back to reference Bashash S, Fathy H (2011) Robust demand-side plug-in electric vehicle load control for renewable energy management. In: American control conference (ACC), pp 929–934 Bashash S, Fathy H (2011) Robust demand-side plug-in electric vehicle load control for renewable energy management. In: American control conference (ACC), pp 929–934
4.
go back to reference Chen Z, Wu L, Fu Y (2012) Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans Smart Grid 3(4):1822–1831CrossRef Chen Z, Wu L, Fu Y (2012) Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans Smart Grid 3(4):1822–1831CrossRef
5.
go back to reference Deilami S, Masoum AS, Moses PS, Masoum M (2011) Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans Smart Grid 2(3):456–467CrossRef Deilami S, Masoum AS, Moses PS, Masoum M (2011) Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans Smart Grid 2(3):456–467CrossRef
6.
go back to reference Fan Z (2012) A distributed demand response algorithm and its application to phev charging in smart grids. IEEE Trans Smart Grid 3(3):1280–1290CrossRef Fan Z (2012) A distributed demand response algorithm and its application to phev charging in smart grids. IEEE Trans Smart Grid 3(3):1280–1290CrossRef
7.
go back to reference Galus MD, Andersson G, Art S (2012) A hierarchical, distributed pev charging control in low voltage distribution grids to ensure network security. In: Power and energy society general meeting, 2012 IEEE, pp 1–8 Galus MD, Andersson G, Art S (2012) A hierarchical, distributed pev charging control in low voltage distribution grids to ensure network security. In: Power and energy society general meeting, 2012 IEEE, pp 1–8
8.
go back to reference Garcia-Torres F, Vilaplana DG, Bordons C, Roncero-Sanchez P, Ridao MA (2018) Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Trans Smart Grid, 1–1 Garcia-Torres F, Vilaplana DG, Bordons C, Roncero-Sanchez P, Ridao MA (2018) Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Trans Smart Grid, 1–1
9.
go back to reference Gautschi M, Scheuss O, Schluchter C (2009) Simulation of an agent based vehicle-to-grid (v2g) implementation. Electr Power Syst Res 120:177–183 Gautschi M, Scheuss O, Schluchter C (2009) Simulation of an agent based vehicle-to-grid (v2g) implementation. Electr Power Syst Res 120:177–183
10.
go back to reference Giorgio AD, Liberati F, Canale S (2014) Electric vehicle charging control in smartgrids: a model predictive control approach. Control Eng Pract 22:147–162CrossRef Giorgio AD, Liberati F, Canale S (2014) Electric vehicle charging control in smartgrids: a model predictive control approach. Control Eng Pract 22:147–162CrossRef
11.
go back to reference Gouveia C, Moreira J, Moreira CL, Peças Lopes JA (2013) Coordinating storage and demand response for microgrid emergency operation. IEEE Trans Smart Grid 4(4):1898–1908CrossRef Gouveia C, Moreira J, Moreira CL, Peças Lopes JA (2013) Coordinating storage and demand response for microgrid emergency operation. IEEE Trans Smart Grid 4(4):1898–1908CrossRef
12.
go back to reference Harley R, Habeter T (2013) Utilizing building-level demand response in frequency regulation of actual microgrids. In: IECON 2013—39th annual conference of the IEEE industrial electronics society, pp 2205–2210 Harley R, Habeter T (2013) Utilizing building-level demand response in frequency regulation of actual microgrids. In: IECON 2013—39th annual conference of the IEEE industrial electronics society, pp 2205–2210
13.
go back to reference Hsu Y, Su C (1991) Dispatch of direct load control using dynamic programming. IEEE Trans Power Syst 6(3):1056–1061CrossRef Hsu Y, Su C (1991) Dispatch of direct load control using dynamic programming. IEEE Trans Power Syst 6(3):1056–1061CrossRef
14.
go back to reference Hu J, You S, Lind M, Østergaard J (2014) Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Trans Smart Grid 5(2):703–711CrossRef Hu J, You S, Lind M, Østergaard J (2014) Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Trans Smart Grid 5(2):703–711CrossRef
16.
go back to reference Ito A, Kawashima A, Suzuki T, Inagaki S, Yamaguchi T, Zhou Z (2018) Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE Trans Control Syst Technol 26(1):51–64CrossRef Ito A, Kawashima A, Suzuki T, Inagaki S, Yamaguchi T, Zhou Z (2018) Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE Trans Control Syst Technol 26(1):51–64CrossRef
17.
go back to reference Jayadev V, Swarup KS (2013) Optimization of microgrid with demand side management using genetic algorithm. In: Proceedings of the IET conference on power in unity: a whole system approach Jayadev V, Swarup KS (2013) Optimization of microgrid with demand side management using genetic algorithm. In: Proceedings of the IET conference on power in unity: a whole system approach
18.
go back to reference Kostkova K, Omelina L, Kycina P, Jamrich P (2013) An introduction to load management. Electr Power Syst Res 95:184–191CrossRef Kostkova K, Omelina L, Kycina P, Jamrich P (2013) An introduction to load management. Electr Power Syst Res 95:184–191CrossRef
19.
go back to reference Kriett PO, Salani M (2010) Optimal control of a residential microgrid. Energy 42(1):321 – 330, 2012. 8th World Energy System Conference, WESC (2010) Kriett PO, Salani M (2010) Optimal control of a residential microgrid. Energy 42(1):321 – 330, 2012. 8th World Energy System Conference, WESC (2010)
20.
go back to reference Kurucz CN, Brandt D, Sim S (1996) A linear programming model for reducing system peak through customer load control programs. IEEE Trans Power Syst 11(4):1817–1824CrossRef Kurucz CN, Brandt D, Sim S (1996) A linear programming model for reducing system peak through customer load control programs. IEEE Trans Power Syst 11(4):1817–1824CrossRef
21.
go back to reference Lee W, Xiang L, Schober R, Wong VWS (2015) Electric vehicle charging stations with renewable power generators: a game theoretical analysis. IEEE Trans Smart Grid 6(2):608–617CrossRef Lee W, Xiang L, Schober R, Wong VWS (2015) Electric vehicle charging stations with renewable power generators: a game theoretical analysis. IEEE Trans Smart Grid 6(2):608–617CrossRef
22.
go back to reference Li D, Chiu WY, Sun H (2017) Microgrid. Advanced control methods and renewable energy system integration, chapter Demand Side Management in Microgrid Control Systems. Elsevier Li D, Chiu WY, Sun H (2017) Microgrid. Advanced control methods and renewable energy system integration, chapter Demand Side Management in Microgrid Control Systems. Elsevier
23.
go back to reference Lofberg J (2004) Yalmip: a toolbox for modeling and optimization in matlab. In: IEEE international symposium on computer aided control systems design, pp 284–289 Lofberg J (2004) Yalmip: a toolbox for modeling and optimization in matlab. In: IEEE international symposium on computer aided control systems design, pp 284–289
24.
go back to reference Logenthiran T, Srinivasan D, Shun TZ (2012) Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3):1244–1252CrossRef Logenthiran T, Srinivasan D, Shun TZ (2012) Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3):1244–1252CrossRef
26.
go back to reference Mendes PRC, Valverde L, Bordons C, Normey-Rico JE (2016) Energy management of an experimental microgrid coupled to a v2g system. J Power Sour 327:702–713CrossRef Mendes PRC, Valverde L, Bordons C, Normey-Rico JE (2016) Energy management of an experimental microgrid coupled to a v2g system. J Power Sour 327:702–713CrossRef
27.
go back to reference Mohsenian-Rad H et al (2015) Optimal charging of electric vehicles with uncertain departure times: a closed-form solution. IEEE Trans Smart Grid 6(2):940–942CrossRef Mohsenian-Rad H et al (2015) Optimal charging of electric vehicles with uncertain departure times: a closed-form solution. IEEE Trans Smart Grid 6(2):940–942CrossRef
28.
go back to reference Mou Y, Xing H, Lin Z, Fu M (2015) Decentralized optimal demand-side management for phev charging in a smart grid. IEEE Trans Smart Grid 6(2):726–736CrossRef Mou Y, Xing H, Lin Z, Fu M (2015) Decentralized optimal demand-side management for phev charging in a smart grid. IEEE Trans Smart Grid 6(2):726–736CrossRef
29.
go back to reference Pahasa J, Ngamroo I (2015) Phevs bidirectional charging/discharging and soc control for microgrid frequency stabilization using multiple mpc. IEEE Trans Smart Grid 6(2):526–533CrossRef Pahasa J, Ngamroo I (2015) Phevs bidirectional charging/discharging and soc control for microgrid frequency stabilization using multiple mpc. IEEE Trans Smart Grid 6(2):526–533CrossRef
30.
go back to reference Palensky P, Dietrich D (2011) Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans Ind Inform 7(3):381–388CrossRef Palensky P, Dietrich D (2011) Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans Ind Inform 7(3):381–388CrossRef
31.
go back to reference Parisio A, Glielmo L (2011) A mixed integer linear formulation for microgrid economic scheduling. In: Smart grid communications (SmartGridComm), 2011 IEEE international conference on, pp 505–510. IEEE Parisio A, Glielmo L (2011) A mixed integer linear formulation for microgrid economic scheduling. In: Smart grid communications (SmartGridComm), 2011 IEEE international conference on, pp 505–510. IEEE
32.
go back to reference Parisio A, Rikos E, Glielmo L (2014) A model predictive control approach to microgrid operation optimization. IEEE Trans Control Syst Technol 22(5):1813–1827CrossRef Parisio A, Rikos E, Glielmo L (2014) A model predictive control approach to microgrid operation optimization. IEEE Trans Control Syst Technol 22(5):1813–1827CrossRef
33.
go back to reference Parisio A, Rikos E, Glielmo L (2016) Stochastic model predictive control for economic/environmental operation management of microgrids: an experimental case study. J Process Control 43:24–37CrossRef Parisio A, Rikos E, Glielmo L (2016) Stochastic model predictive control for economic/environmental operation management of microgrids: an experimental case study. J Process Control 43:24–37CrossRef
34.
go back to reference Richardson P, Flynn D, Keane A (2012) Optimal charging of electric vehicles in low-voltage distribution systems. IEEE Trans Power Syst 27(1):268–279CrossRef Richardson P, Flynn D, Keane A (2012) Optimal charging of electric vehicles in low-voltage distribution systems. IEEE Trans Power Syst 27(1):268–279CrossRef
35.
go back to reference Samad T, Koch E, Stluka P (2016) Automated demand response for smart buildings and microgrids: the state of the practice and research challenges. Proc IEEE 104(4):726–744CrossRef Samad T, Koch E, Stluka P (2016) Automated demand response for smart buildings and microgrids: the state of the practice and research challenges. Proc IEEE 104(4):726–744CrossRef
36.
go back to reference Wang G, Zhao J, Wen F, Xue Y, Ledwich G (2015) Dispatch strategy of phevs to mitigate selected patterns of seasonally varying outputs from renewable generation. IEEE Trans Smart Grid 6(2):627–639CrossRef Wang G, Zhao J, Wen F, Xue Y, Ledwich G (2015) Dispatch strategy of phevs to mitigate selected patterns of seasonally varying outputs from renewable generation. IEEE Trans Smart Grid 6(2):627–639CrossRef
Metadata
Title
Demand-Side Management and Electric Vehicle Integration
Authors
Carlos Bordons
Félix Garcia-Torres
Miguel A. Ridao
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-24570-2_6