Skip to main content
Top

2024 | OriginalPaper | Chapter

Deploying Computer-Based Vision to Enhance Safety in Industrial Environment

Authors : Mohammad Shahin, F. Frank Chen, Ali Hosseinzadeh, Hamid Khodadadi Koodiani, Hamed Bouzary, Rasoul Rashidifar

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the cornerstones of Lean manufacturing, according to academic research, is the 5S+1, which introduces quality in manufacturing. This study aims to demonstrate how computer-based vision and object detection algorithms, can assist in the implementation of safety as 6th S in 5S+1 by monitoring and identifying employees who disregard accepted safety procedures, like wearing Personal Protective Equipment (PPE). The research evaluated the performance indicators of a detection technique and reviewed and analyzed it. To confirm workers’ PPE compliance, the suggested model used the You-Only-Look-Once (YOLO v7) architecture. A deep learning technique was subsequently applied to confirm the safety helmets and safety vests. This strategy is determined to be the most effective when using the VGG-16 algorithm, achieving an 80% F1 score and processing 11.79 frames per second (FPS), making it ideal for real-time detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference García Alcaraz, J.L., Morales García, A.S., Díaz Reza, J.R., et al.: Machinery lean manufacturing tools for improved sustainability: the Mexican maquiladora industry experience. Mathematics 10, 1468 (2022)CrossRef García Alcaraz, J.L., Morales García, A.S., Díaz Reza, J.R., et al.: Machinery lean manufacturing tools for improved sustainability: the Mexican maquiladora industry experience. Mathematics 10, 1468 (2022)CrossRef
4.
go back to reference Sukdeo, N.: The application of 6S methodology as a lean improvement tool in an ink manufacturing company. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1666–1671 (2017) Sukdeo, N.: The application of 6S methodology as a lean improvement tool in an ink manufacturing company. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1666–1671 (2017)
14.
go back to reference Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2013) Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2013)
15.
go back to reference Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
17.
go back to reference He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
19.
go back to reference Pereira, N.: PereiraASLNet: ASL letter recognition with YOLOX taking mean average precision and inference time considerations. In: 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–6 (2022) Pereira, N.: PereiraASLNet: ASL letter recognition with YOLOX taking mean average precision and inference time considerations. In: 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–6 (2022)
22.
go back to reference Li, M., Ge, H., Wang, H.: IMG-CenterNet: an optimized algorithm based on CenterNet for pedestrian detection. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 203–208 (2022) Li, M., Ge, H., Wang, H.: IMG-CenterNet: an optimized algorithm based on CenterNet for pedestrian detection. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 203–208 (2022)
23.
go back to reference Shen, Z., Nguyen, C.: Temporal 3D RetinaNet for fish detection. In: 2020 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–5 (2020) Shen, Z., Nguyen, C.: Temporal 3D RetinaNet for fish detection. In: 2020 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–5 (2020)
26.
go back to reference Chollet, F.: Deep Learning with Python. Manning Publications (2018) Chollet, F.: Deep Learning with Python. Manning Publications (2018)
27.
go back to reference Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017) Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)
28.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Metadata
Title
Deploying Computer-Based Vision to Enhance Safety in Industrial Environment
Authors
Mohammad Shahin
F. Frank Chen
Ali Hosseinzadeh
Hamid Khodadadi Koodiani
Hamed Bouzary
Rasoul Rashidifar
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_59

Premium Partner