Skip to main content
Top

2016 | OriginalPaper | Chapter

Derivation of the Boltzmann Equation: Hard Spheres, Short-Range Potentials and Beyond

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review some results concerning the derivation of the Boltzmann equation starting from the many-body classical Hamiltonian dynamics. In particular, the celebrated paper by Lanford III [21] and the more recent papers [13, 23] are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The H-Theorem asserts that the kinetic entropy associated to the solution f(t) of the Boltzmann Eq. (1) decreases in time. More precisely, let H(f) be the H-functional defined as the information entropy with a negative sign:
$$\begin{aligned} H(f(t))=\int _{\mathbb {R}^3\times \mathbb {R}^3}dx\,dv\,f(t,x,v)[\log {f(t,x,v)}-1]. \end{aligned}$$
A straightforward computation shows that \(H(f(t))\le H(f(0))\).
 
2
For simplicity, the potential is assumed to be smooth, to ensure the existence and uniqueness of the solution to the Newton equations (6).
 
Literature
1.
go back to reference Bobylev, A.V., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Comm. Math. Phys. 319(3), 683–702 (2013)MathSciNetCrossRefMATH Bobylev, A.V., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Comm. Math. Phys. 319(3), 683–702 (2013)MathSciNetCrossRefMATH
2.
go back to reference Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. arXiv:1305.3397 Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. arXiv:​1305.​3397
3.
go back to reference Bodineau, T., Gallagher, I., Saint-Raymond, L. : From hard sphere dynamics to the Stokes-Fourier equations: an \(L^2\) analysis of the Boltzmann-Grad limit. arXiv:1511.03057 Bodineau, T., Gallagher, I., Saint-Raymond, L. : From hard sphere dynamics to the Stokes-Fourier equations: an \(L^2\) analysis of the Boltzmann-Grad limit. arXiv:​1511.​03057
4.
go back to reference Bogoliubov, N.: Problems of dynamical theory in statistical physics. In: de Boer, J., Uhlenbeck, G.E. (eds.) Studies in Statistical Mechanics. Interscience, New York (1962) Bogoliubov, N.: Problems of dynamical theory in statistical physics. In: de Boer, J., Uhlenbeck, G.E. (eds.) Studies in Statistical Mechanics. Interscience, New York (1962)
5.
go back to reference Boltzmann, L.: Lectures on Gas Theory. English edition annotated by Brush, S. University of California Press, Berkeley (1964, reprint) Boltzmann, L.: Lectures on Gas Theory. English edition annotated by Brush, S. University of California Press, Berkeley (1964, reprint)
6.
go back to reference Born, M., Green, H.S.: A general kinetic theory of liquids. I. The molecular distribution functions. Proc. Roy. Soc. Lond. A 188, 10–18 (1946) Born, M., Green, H.S.: A general kinetic theory of liquids. I. The molecular distribution functions. Proc. Roy. Soc. Lond. A 188, 10–18 (1946)
8.
go back to reference Cercignani, C., Gerasimenko, V.I., Petrina, D.I.: Many-Particle Dynamics and Kinetic Equations. Kluwer Academic Publishers, Netherlands (1997)CrossRefMATH Cercignani, C., Gerasimenko, V.I., Petrina, D.I.: Many-Particle Dynamics and Kinetic Equations. Kluwer Academic Publishers, Netherlands (1997)CrossRefMATH
9.
go back to reference Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994) Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)
10.
11.
go back to reference Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Model. Methods Appl. Sci. 9, 1123–1145 (1999)MathSciNetCrossRefMATH Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Model. Methods Appl. Sci. 9, 1123–1145 (1999)MathSciNetCrossRefMATH
12.
go back to reference Fournier, N.: Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys. 299(3), 765–782 (2010)MathSciNetCrossRefMATH Fournier, N.: Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys. 299(3), 765–782 (2010)MathSciNetCrossRefMATH
13.
go back to reference Gallagher, I., Saint Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013) Gallagher, I., Saint Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013)
16.
go back to reference Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Commun. Math. Phys. 105, 189–203 (1986)MathSciNetCrossRefMATH Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Commun. Math. Phys. 105, 189–203 (1986)MathSciNetCrossRefMATH
17.
go back to reference Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two- and three-dimensional rare gas in vacuum: erratum and improved result. Commun. Math. Phys. 121, 143–146 (1989)MathSciNetCrossRefMATH Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two- and three-dimensional rare gas in vacuum: erratum and improved result. Commun. Math. Phys. 121, 143–146 (1989)MathSciNetCrossRefMATH
18.
go back to reference King, F.: BBGKY Hierarchy for Positive Potentials, Ph.D. thesis, Department of Mathematics, University of California, Berkeley (1975) King, F.: BBGKY Hierarchy for Positive Potentials, Ph.D. thesis, Department of Mathematics, University of California, Berkeley (1975)
19.
go back to reference Kirkwood, J.G.: The statistical mechanical theory of transport process I. General theory. J. Chem. Phys 14, 180–202 (1946)CrossRef Kirkwood, J.G.: The statistical mechanical theory of transport process I. General theory. J. Chem. Phys 14, 180–202 (1946)CrossRef
20.
go back to reference Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Phys. Zs. Sow. Union 10, 154 (1936). (in German) Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Phys. Zs. Sow. Union 10, 154 (1936). (in German)
21.
go back to reference Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975) Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)
22.
go back to reference Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. Roy. Soc. Lond. Ser. A 157, 49–88 (1867)CrossRef Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. Roy. Soc. Lond. Ser. A 157, 49–88 (1867)CrossRef
23.
go back to reference Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 64 (2014) Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 64 (2014)
24.
go back to reference Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. arXiv:1405.4676 Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. arXiv:​1405.​4676
25.
go back to reference Ruelle, D.: Statistical Mechanics: Rigorous Results. Imperial College Press, London (1999). Reprint of the 1989 edition. World Scientific Publishing Co. Inc., River Edge, NJ Ruelle, D.: Statistical Mechanics: Rigorous Results. Imperial College Press, London (1999). Reprint of the 1989 edition. World Scientific Publishing Co. Inc., River Edge, NJ
26.
27.
go back to reference Spohn, H.: Boltzmann equation and Boltzmann hierarchy. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048, pp. 207–220. Springer, Berlin (1984) Spohn, H.: Boltzmann equation and Boltzmann hierarchy. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048, pp. 207–220. Springer, Berlin (1984)
29.
go back to reference Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18, 245–297 (1988)MathSciNetMATH Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18, 245–297 (1988)MathSciNetMATH
31.
go back to reference Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143(3), 273–307 (1998)MathSciNetCrossRefMATH Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143(3), 273–307 (1998)MathSciNetCrossRefMATH
32.
go back to reference Yvon, J.: La théorie statistique des fluides et l’équation d’état. Actualités scientifiques et industrielles. Hermann, Paris (1935) Yvon, J.: La théorie statistique des fluides et l’équation d’état. Actualités scientifiques et industrielles. Hermann, Paris (1935)
Metadata
Title
Derivation of the Boltzmann Equation: Hard Spheres, Short-Range Potentials and Beyond
Author
Chiara Saffirio
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-32144-8_15

Premium Partner