Skip to main content
Top
Published in:

26-03-2024

Design and analysis of a highly efficient 2D/3D bilayer-based perovskite solar cell

Authors: M. Najafi, A. Kiani–Sarkaleh, A. Ghadimi, S. A. Sedigh Ziabari, Ali Abdolahzadeh Ziabari

Published in: Journal of Computational Electronics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite significant development of perovskite solar cells (PSCs) in the last few years, several issues need to be addressed for commercialization. The fabrication of a 2-dimensional/3-dimensional (2D/3D) perovskite layer as the light absorbing layer has recently come up as one of the most efficient methods to overcome this barrier without compromising the physical functionality of the device. Additionally, the inverted p–i–n configuration of2D/3D bilayer PSCs has caught lots of attention in the recent years owing to low-cost, low-temperature growth process and inhibited hysteresis properties. In this study, we introduce an inverted 2D/3D bilayer PSC with a novel configuration of FTO/NiOx/BA2MA3Pb4I13/MAPbI3/C60/Au and computationally study the parameters that affect the performance of the modeled device. Considerable power conversion efficiency (PCE) of 28.24% was achieved after optimizing the performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Safat Dipta, S., Uddin, A., Conibeer, G.: Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon 8, e11380 (2022)CrossRef Safat Dipta, S., Uddin, A., Conibeer, G.: Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon 8, e11380 (2022)CrossRef
2.
go back to reference National Renewable Energy Laboratory (NREL). Interactive Best Research–Cell Efficiency Chart | Photovoltaic Research | NREL. (Accessed November 2022). National Renewable Energy Laboratory (NREL). Interactive Best Research–Cell Efficiency Chart | Photovoltaic Research | NREL. (Accessed November 2022).
3.
go back to reference Karimi, E., Ghorashi, S.M.B.: Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 11(3), 032510 (2017)CrossRef Karimi, E., Ghorashi, S.M.B.: Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 11(3), 032510 (2017)CrossRef
4.
go back to reference Safat Dipta, S., Uddin, A.: Stability issues of perovskite solar cells: a critical review. Energy Technol. 9(11), 2100560 (2021)CrossRef Safat Dipta, S., Uddin, A.: Stability issues of perovskite solar cells: a critical review. Energy Technol. 9(11), 2100560 (2021)CrossRef
5.
go back to reference Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar–cell absorber with enhanced moisture stability. Angew. Chemie. Int. Ed. 53, 11232–11235 (2014)CrossRef Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar–cell absorber with enhanced moisture stability. Angew. Chemie. Int. Ed. 53, 11232–11235 (2014)CrossRef
6.
go back to reference Zheng, Y., Niu, T., Ran, X., Qiu, J., Li, B., Xia, Y., Chen, Y., Huang, W.: Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A. 7, 13860–13872 (2019)CrossRef Zheng, Y., Niu, T., Ran, X., Qiu, J., Li, B., Xia, Y., Chen, Y., Huang, W.: Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A. 7, 13860–13872 (2019)CrossRef
7.
go back to reference Lim, K.-G., Kim, H.-B., Jeong, J., Kim, J.Y., Lee, T.-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26(37), 6461–6466 (2014)CrossRef Lim, K.-G., Kim, H.-B., Jeong, J., Kim, J.Y., Lee, T.-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26(37), 6461–6466 (2014)CrossRef
8.
go back to reference Zhou, T., Lai, H., Liu, T., Lu, D., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, 1901242 (2019)CrossRef Zhou, T., Lai, H., Liu, T., Lu, D., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, 1901242 (2019)CrossRef
9.
go back to reference Ge, C., Xue, Y.Z.B., Li, L., Tang, B., Hu, H.: Recent progress in 2D/3D multidimensional metal halide perovskites solar cells. Front. Mater. 7, 380 (2020)CrossRef Ge, C., Xue, Y.Z.B., Li, L., Tang, B., Hu, H.: Recent progress in 2D/3D multidimensional metal halide perovskites solar cells. Front. Mater. 7, 380 (2020)CrossRef
10.
go back to reference Chakrabartty, J., Aminul Islam, Md., Reza, S.: Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 230, 195–207 (2021)CrossRef Chakrabartty, J., Aminul Islam, Md., Reza, S.: Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 230, 195–207 (2021)CrossRef
11.
go back to reference Yu, D., Cao, F., Su, C., Xing, G.: Exploring, identifying, and removing the efficiency-limiting factor of mixed-dimensional 2D/3D perovskite solar cells. Acc. Chem. Res. 56(8), 959–970 (2023)CrossRef Yu, D., Cao, F., Su, C., Xing, G.: Exploring, identifying, and removing the efficiency-limiting factor of mixed-dimensional 2D/3D perovskite solar cells. Acc. Chem. Res. 56(8), 959–970 (2023)CrossRef
12.
go back to reference Safat Dipta, S., Rahaman, M.H., Binte Tarique, W., Howlader, A., Pratik, A., Stride, J.A., Uddin, A.: Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss. Sol. Energy Mater. Sol. Cells 266, 112655 (2024)CrossRef Safat Dipta, S., Rahaman, M.H., Binte Tarique, W., Howlader, A., Pratik, A., Stride, J.A., Uddin, A.: Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss. Sol. Energy Mater. Sol. Cells 266, 112655 (2024)CrossRef
13.
go back to reference Chen, B., Yang, M., Priya, S., Zhu, K.: Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)CrossRef Chen, B., Yang, M., Priya, S., Zhu, K.: Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)CrossRef
14.
go back to reference Levine, I., Nayak, P.K., Wang, J.T.-W., Sakai, N., Van Reenen, S., Brenner, T.M., Mukhopadhyay, S., Snaith, H.J., Hodes, G., Cahen, D.: Interface–dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells”. J. Phys. Chem. C 120, 16399–16411 (2016)CrossRef Levine, I., Nayak, P.K., Wang, J.T.-W., Sakai, N., Van Reenen, S., Brenner, T.M., Mukhopadhyay, S., Snaith, H.J., Hodes, G., Cahen, D.: Interface–dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells”. J. Phys. Chem. C 120, 16399–16411 (2016)CrossRef
15.
go back to reference Jacobs, D.A., Wu, Y., Shen, H., Barugkin, C., Beck, F.J., White, T.P., Weber, K., Catchpole, K.R.: Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Phys. Chem. Chem. Phys. 19, 3094–3103 (2017)CrossRef Jacobs, D.A., Wu, Y., Shen, H., Barugkin, C., Beck, F.J., White, T.P., Weber, K., Catchpole, K.R.: Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Phys. Chem. Chem. Phys. 19, 3094–3103 (2017)CrossRef
16.
go back to reference Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRef Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRef
17.
go back to reference Kumar, A., Singh, S., Srivastavac, K., Sharma, A., Sharma, D.K.: Performance and stability enhancement of mixed dimensional bilayer inverted perovskite (BA2PbI4/MAPbI3) solar cell using drift diffusion model. Sustain. Chem. Pharm. 29, 100807 (2022)CrossRef Kumar, A., Singh, S., Srivastavac, K., Sharma, A., Sharma, D.K.: Performance and stability enhancement of mixed dimensional bilayer inverted perovskite (BA2PbI4/MAPbI3) solar cell using drift diffusion model. Sustain. Chem. Pharm. 29, 100807 (2022)CrossRef
18.
go back to reference Wang, X., Rakstys, K., Jack, K., Jin, H., Lai, J., Li, H., Ranasinghe, C.S.K., Saghaei, J., Zhang, G., Burn, P.L., Gentle, I.R., Shaw, P.E.: Engineering fluorinated–cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021)CrossRef Wang, X., Rakstys, K., Jack, K., Jin, H., Lai, J., Li, H., Ranasinghe, C.S.K., Saghaei, J., Zhang, G., Burn, P.L., Gentle, I.R., Shaw, P.E.: Engineering fluorinated–cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021)CrossRef
19.
go back to reference Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P.: Modeling thin–film PV devices. Prog. Photovolt. 12, 143–153 (2004)CrossRef Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P.: Modeling thin–film PV devices. Prog. Photovolt. 12, 143–153 (2004)CrossRef
20.
go back to reference Li, X., Hoffman, J.M., Kanatzidis, M.G.: The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021)CrossRef Li, X., Hoffman, J.M., Kanatzidis, M.G.: The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021)CrossRef
21.
go back to reference Liu, Y., Akin, S., Pan, L., Uchida, R., Arora, N., Milić, J.V., Hinderhofer, A., Schreiber, F., Uhl, A.R., Zakeeruddin, S.M., Hagfeldt, A., Ibrahim Dar, M., Grätzel, M.: Ultrahydrophobic 3D/2D fluoroarene bilayer–based water–resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019)CrossRef Liu, Y., Akin, S., Pan, L., Uchida, R., Arora, N., Milić, J.V., Hinderhofer, A., Schreiber, F., Uhl, A.R., Zakeeruddin, S.M., Hagfeldt, A., Ibrahim Dar, M., Grätzel, M.: Ultrahydrophobic 3D/2D fluoroarene bilayer–based water–resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019)CrossRef
22.
go back to reference Dixit, H., Punetha, D., Pandey, S.K.: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019)CrossRef Dixit, H., Punetha, D., Pandey, S.K.: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019)CrossRef
23.
go back to reference Tiwari, P., Alotaibi, M.F., Al-Hadeethi, Y., Srivastava, V., Arkook, B., Sadanand, Lohia, P., KumarDwivedi, D., Umar, A., Algadi, H., Baskoutas, S.: Design and simulation of efficient SnS–based solar cell using spiro–OMeTAD as hole transport layer. Nanomaterials 12, 2506 (2022)CrossRef Tiwari, P., Alotaibi, M.F., Al-Hadeethi, Y., Srivastava, V., Arkook, B., Sadanand, Lohia, P., KumarDwivedi, D., Umar, A., Algadi, H., Baskoutas, S.: Design and simulation of efficient SnS–based solar cell using spiro–OMeTAD as hole transport layer. Nanomaterials 12, 2506 (2022)CrossRef
24.
go back to reference Arumugam, G.M., Karunakaran, S.K., Liu, C., Zhang, C., Guo, F., Wu, S., Mai, Y.: Inorganic hole transport layers in inverted perovskite solar cells: a review. Nano Select. 2, 1081–1116 (2021)CrossRef Arumugam, G.M., Karunakaran, S.K., Liu, C., Zhang, C., Guo, F., Wu, S., Mai, Y.: Inorganic hole transport layers in inverted perovskite solar cells: a review. Nano Select. 2, 1081–1116 (2021)CrossRef
25.
go back to reference Chen, W., Pang, G., Zhou, Y., Sun, Y., Liu, F.-Z., Chen, R., Chen, S., Djurišić, A.B., He, Z.: Stabilizing n–type hetero–junctions for NiOx based inverted planar perovskite solar cells with an efficiency of 21.6. J. Mater. Chem. 8, 1865–1874 (2020)CrossRef Chen, W., Pang, G., Zhou, Y., Sun, Y., Liu, F.-Z., Chen, R., Chen, S., Djurišić, A.B., He, Z.: Stabilizing n–type hetero–junctions for NiOx based inverted planar perovskite solar cells with an efficiency of 21.6. J. Mater. Chem. 8, 1865–1874 (2020)CrossRef
26.
go back to reference Karmalkar, S., Haneefa, S.: A physically based explicit J-V model of a solar cell for simple design calculations. IEEE Electron Device Lett. 29(5), 449–451 (2008)CrossRef Karmalkar, S., Haneefa, S.: A physically based explicit J-V model of a solar cell for simple design calculations. IEEE Electron Device Lett. 29(5), 449–451 (2008)CrossRef
27.
go back to reference Abdolahzadeh Ziabari, A., Mohabbati Zindanlou, N., Hassanzadeh, J., Golshahi, S., Bagheri Khatibani, A.: Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: influence of stabilizer and thickness. J. Alloys Compd. 842, 155741 (2020)CrossRef Abdolahzadeh Ziabari, A., Mohabbati Zindanlou, N., Hassanzadeh, J., Golshahi, S., Bagheri Khatibani, A.: Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: influence of stabilizer and thickness. J. Alloys Compd. 842, 155741 (2020)CrossRef
28.
go back to reference Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., Suklueng, M.: Effect of deep level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS–1D. Results Phys. 16, 102839 (2020)CrossRef Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., Suklueng, M.: Effect of deep level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS–1D. Results Phys. 16, 102839 (2020)CrossRef
29.
go back to reference Wang, F., Bai, S., Tress, W., Hagfeldt, A., Gao, F.: Defects engineering for high performance perovskite solar cells. npj Flex Electron 2, 22 (2018)CrossRef Wang, F., Bai, S., Tress, W., Hagfeldt, A., Gao, F.: Defects engineering for high performance perovskite solar cells. npj Flex Electron 2, 22 (2018)CrossRef
30.
go back to reference Jamal, M.S., Shahahmadi, S.A., Wadi, M.A.A., Chelvanathan, P., Asim, N., Misran, H., Hossain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182, 1204–1210 (2019)CrossRef Jamal, M.S., Shahahmadi, S.A., Wadi, M.A.A., Chelvanathan, P., Asim, N., Misran, H., Hossain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182, 1204–1210 (2019)CrossRef
31.
go back to reference Green, M.A.: Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788 (1981)CrossRef Green, M.A.: Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788 (1981)CrossRef
32.
go back to reference Shyma, A.P., Sellappan, R.: Computational probing of Tin–based Lead–free perovskite solar cells: effect of absorber parameters and various electron transport layer materials on device performance. Materials 15, 7859 (2022)CrossRef Shyma, A.P., Sellappan, R.: Computational probing of Tin–based Lead–free perovskite solar cells: effect of absorber parameters and various electron transport layer materials on device performance. Materials 15, 7859 (2022)CrossRef
33.
go back to reference Haider, S.Z., Anwar, H., Wang, M.: Remarkable performance optimization of inverted p–i–n architecture perovskite solar cell with CZTS as hole transport material. Physica B 620, 413270 (2021)CrossRef Haider, S.Z., Anwar, H., Wang, M.: Remarkable performance optimization of inverted p–i–n architecture perovskite solar cell with CZTS as hole transport material. Physica B 620, 413270 (2021)CrossRef
34.
go back to reference Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., Hao, Y.: Device simulation of inverted CH3NH3PbI3–xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018)CrossRef Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., Hao, Y.: Device simulation of inverted CH3NH3PbI3–xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018)CrossRef
35.
go back to reference Zhou, Z.J., Deng, Y.Q., Zhang, P.P., Kou, D.X., Zhou, W.H., Meng, Y.N., Yuan, S.J., Wu, S.X.: Cu2ZnSnS4 quantum dots as hole transport material for enhanced charge extraction and stability in all–inorganic CsPbBr 3 perovskite solar cells. Sol. RRL. 3, 1800354 (2019)CrossRef Zhou, Z.J., Deng, Y.Q., Zhang, P.P., Kou, D.X., Zhou, W.H., Meng, Y.N., Yuan, S.J., Wu, S.X.: Cu2ZnSnS4 quantum dots as hole transport material for enhanced charge extraction and stability in all–inorganic CsPbBr 3 perovskite solar cells. Sol. RRL. 3, 1800354 (2019)CrossRef
36.
go back to reference Wang, Z., Liu, L., Wang, Y., Ma, Y., Yang, Z., Wan, M., Zhu, H., Mahmoudi, T., Hahn, Y.-B., Mai, Y.: Green anti solvent–mediators stabilize perovskites for efficient NiOx–based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023)CrossRef Wang, Z., Liu, L., Wang, Y., Ma, Y., Yang, Z., Wan, M., Zhu, H., Mahmoudi, T., Hahn, Y.-B., Mai, Y.: Green anti solvent–mediators stabilize perovskites for efficient NiOx–based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023)CrossRef
37.
go back to reference Irannejad, N., Rezaei, B., Ensafi, A.: Self–healing 2D/3D perovskite for efficient and stable p–i–n perovskite solar cells. Chemosphere 311, 136893 (2023)CrossRef Irannejad, N., Rezaei, B., Ensafi, A.: Self–healing 2D/3D perovskite for efficient and stable p–i–n perovskite solar cells. Chemosphere 311, 136893 (2023)CrossRef
Metadata
Title
Design and analysis of a highly efficient 2D/3D bilayer-based perovskite solar cell
Authors
M. Najafi
A. Kiani–Sarkaleh
A. Ghadimi
S. A. Sedigh Ziabari
Ali Abdolahzadeh Ziabari
Publication date
26-03-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02152-x