Skip to main content
Top
Published in: Microsystem Technologies 2/2018

18-07-2017 | Technical Paper

Design and analysis of a new three-axis micro-gyroscope

Authors: Bo Yang, Chengfu Lu

Published in: Microsystem Technologies | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new three-axis micro-gyroscope which directly integrates spatial triaxial angular velocities sensitive function in single structure chip is designed and analyzed in the paper. The entire structure consists of three main parts: the left and right mechanism and middle mechanism. The middle mechanism with two top and down proof masses is connected with the left and right tuning fork mechanisms. Four proof masses are driven simultaneously to generate two orthogonal velocities in the planar for the sense of triaxial angular rates. The structural simulation of three-axis micro-gyroscope is implemented by the finite element method. The modal analysis results demonstrate that the new three-axis micro-gyroscope has the first mode of 24,719 Hz for synchronous drive of four proof masses, the second mode of 29,527 Hz for the z-axis angular velocity conversion, the sixth mode of 36,277 Hz for the x-axis angular velocity transformation, as well as the eighth mode of 38767 Hz for the y-axis angular velocity conversion respectively. The input-output simulation illustrates a mechanical sensitivity of 0.753 pm/deg/s for the x-axis angular velocity, a mechanical sensitivity of 0.332 pm/deg/s for the y-axis angular velocity and a mechanical sensitivity of 1.43 pm/deg/s for the z-axis angular velocity simultaneously, which verifies the sensitive characteristics of triaxial angular velocities. The simulation analysis of the mechanical coupling error indicates that the mechanical coupling error along y-axis (that is the sense direction of z-axis angular rates) has a maximum value of 103.3 deg/s. Moreover, the thermal analysis confirms the design of large frequency difference between drive mode and sense mode prominently suppresses the temperature influence on the mechanical sensitivity below 0.146% from −40 to 60 °C. The cross-axis coupling simulation shows that the new three-axis micro-gyroscope has a cross-axis coupling below 2.82%. The shock response results verify the new three-axis gyroscope has a shock resistance of 10,000 g in the presence of shock columns. In summary, the structure of the new three-axis gyroscope is proved to be feasible by the simulation and analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acar C (2013) Micromachined monolithic 3-axis gyroscope with single drive. USA Patent, No. US 2013/0328139 A1 Acar C (2013) Micromachined monolithic 3-axis gyroscope with single drive. USA Patent, No. US 2013/0328139 A1
go back to reference Balslink T, Specht H, Classen J (2014) Yaw rate sensor having three sensitive axes and method for manufacturing a yaw rate sensor. USA Patent, No. 2014/0373628 A1 Balslink T, Specht H, Classen J (2014) Yaw rate sensor having three sensitive axes and method for manufacturing a yaw rate sensor. USA Patent, No. 2014/0373628 A1
go back to reference Cazzaniga G, Coronato L (2014) Integrated microelectromechanical gyroscope with improved driving structure. USA Patent, No. US20140116135 Cazzaniga G, Coronato L (2014) Integrated microelectromechanical gyroscope with improved driving structure. USA Patent, No. US20140116135
go back to reference Jeon Y, Kwona H, Kima HC (2014) Design and development of a 3-axis micro gyroscope with vibratory ring springs. Procedia Eng 87:975–978CrossRef Jeon Y, Kwona H, Kima HC (2014) Design and development of a 3-axis micro gyroscope with vibratory ring springs. Procedia Eng 87:975–978CrossRef
go back to reference Oliver AD, Teo YL, Geisberger A, et al (2015) A new three axis low power MEMS gyroscope for consumer and industrial application. In: Transducers 2015, Anchorage, Alaska, USA, pp 31–34 Oliver AD, Teo YL, Geisberger A, et al (2015) A new three axis low power MEMS gyroscope for consumer and industrial application. In: Transducers 2015, Anchorage, Alaska, USA, pp 31–34
go back to reference Piot A, Bourgeteau B, Traon OL,et al(2015)Electromechanical and process design of a 3 axis piezoelectric MEMS gyro in GaAs. In: Inertial sensors and systems 2015, Karlsruhe, Germany, pp 1–16 Piot A, Bourgeteau B, Traon OL,et al(2015)Electromechanical and process design of a 3 axis piezoelectric MEMS gyro in GaAs. In: Inertial sensors and systems 2015, Karlsruhe, Germany, pp 1–16
go back to reference Prandi L, Caminada C, Coronato L, et al (2011) A low-power 3-axis digital-output MEMS gyroscope with single drive and multiplexed angular rate readout. In: 2011 IEEE international solid-state circuits conference, San Francisco, CA, USA, pp 104–106 Prandi L, Caminada C, Coronato L, et al (2011) A low-power 3-axis digital-output MEMS gyroscope with single drive and multiplexed angular rate readout. In: 2011 IEEE international solid-state circuits conference, San Francisco, CA, USA, pp 104–106
go back to reference Seeger J, Anac O (2014) Micromachined gyroscope including a guided mass system. USA Patent, No. US 8833162 Seeger J, Anac O (2014) Micromachined gyroscope including a guided mass system. USA Patent, No. US 8833162
go back to reference Sonmezoglu S, Tehrani PT, Valzasina C et al (2015) Single-structure micromachined three-axis gyroscope with reduced drive-force coupling. IEEE Electron Device Lett 36(9):953–956CrossRef Sonmezoglu S, Tehrani PT, Valzasina C et al (2015) Single-structure micromachined three-axis gyroscope with reduced drive-force coupling. IEEE Electron Device Lett 36(9):953–956CrossRef
go back to reference Tsai NC, Sue CY (2008a) Design and analysis of a tri-axis gyroscope micromachined by surface fabrication. IEEE Sens J 8(12):1933–1940CrossRef Tsai NC, Sue CY (2008a) Design and analysis of a tri-axis gyroscope micromachined by surface fabrication. IEEE Sens J 8(12):1933–1940CrossRef
go back to reference Tsai NC, Sue CY (2008b) Fabrication and analysis of a micro-machined tri-axis gyroscope. J Micromech Microeng 18(11):115014CrossRef Tsai NC, Sue CY (2008b) Fabrication and analysis of a micro-machined tri-axis gyroscope. J Micromech Microeng 18(11):115014CrossRef
go back to reference Tsai NC, Sue CY (2010) Experimental analysis and characterization of electrostatic-drive tri-axis micro-gyroscope. Sens Actuators A 158:231–239CrossRef Tsai NC, Sue CY (2010) Experimental analysis and characterization of electrostatic-drive tri-axis micro-gyroscope. Sens Actuators A 158:231–239CrossRef
go back to reference Walther A, Savoye M, Jourdan G et al (2012) 3-Axis gyroscope with Si Nanogage piezo-resistive detection. MEMS 2012. France, Paris, pp 480–483 Walther A, Savoye M, Jourdan G et al (2012) 3-Axis gyroscope with Si Nanogage piezo-resistive detection. MEMS 2012. France, Paris, pp 480–483
Metadata
Title
Design and analysis of a new three-axis micro-gyroscope
Authors
Bo Yang
Chengfu Lu
Publication date
18-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 2/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3488-4

Other articles of this Issue 2/2018

Microsystem Technologies 2/2018 Go to the issue