Skip to main content
Top
Published in: Electrical Engineering 3/2016

25-04-2016 | Original Paper

Design and analysis of a single-phase low-frequency active power factor correction circuit: a symmetric trapezoidal current waveform approach

Authors: Ming-Kai Hou, Cheng-Hu Chen, Ming-Yang Cheng

Published in: Electrical Engineering | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper focuses on the design and analysis of the single-phase Low-Frequency Active Power Factor Correction (LFAPFC) circuit. The LFAPFC circuit has several attractive features such as low electromagnetic interference, low switching frequency and ease of implementation when compared with the High-Frequency Active Power Factor Correction circuit. Moreover, its performance is much better than that of the Passive Power Factor Correction circuit. However, few of the previous studies focus on determining the values of major parameters of the LFAPFC circuit and their corresponding performance. To conduct an in-depth study on the LFAPFC circuit, this paper proposes a systematic design method based on analyzing the characteristics of a symmetric trapezoidal current waveform. Using the proposed method, output performance indices such as total harmonics distortion and power factor of the LFAPFC circuit can be estimated. In addition, the relationship among the output performance, inductance and conduction parameters of the power switch is derived and investigated. Using the proposed method, designers can determine suitable values of conduction parameters and inductance for specific applications. Computer simulations and real experiments are carried out to verify the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Electromagnetic compatibility (EMC) (2005) Limits for harmonic current emissions (equipment input current \(\le \)16A per phase). IEC Standard IEC 1000-3-2, 3rd edn, Part 3 Section 2 Electromagnetic compatibility (EMC) (2005) Limits for harmonic current emissions (equipment input current \(\le \)16A per phase). IEC Standard IEC 1000-3-2, 3rd edn, Part 3 Section 2
2.
go back to reference Garcia O, Cobos JA, Prieti R, Alou P, Uceda J (2003) Single phase power factor correction: a survey. IEEE Trans Power Electron 18:749–755CrossRef Garcia O, Cobos JA, Prieti R, Alou P, Uceda J (2003) Single phase power factor correction: a survey. IEEE Trans Power Electron 18:749–755CrossRef
3.
go back to reference Roh YS, Moon YJ, Gong JC, Yoo C (2011) Active power factor correction (PFC) circuit with resistor-free zero-current detection. IEEE Trans Power Electron 26:630–637CrossRef Roh YS, Moon YJ, Gong JC, Yoo C (2011) Active power factor correction (PFC) circuit with resistor-free zero-current detection. IEEE Trans Power Electron 26:630–637CrossRef
4.
go back to reference Karaarslan A (2013) The analysis of average sliding control method applied on Sheppard–Taylor power factor correction converter. Electr Eng 95:255–265CrossRef Karaarslan A (2013) The analysis of average sliding control method applied on Sheppard–Taylor power factor correction converter. Electr Eng 95:255–265CrossRef
5.
go back to reference Shrivastava A, Singh B (2013) Power factor-corrected DCM-based electronic ballast. Electr Eng 95:403–411CrossRef Shrivastava A, Singh B (2013) Power factor-corrected DCM-based electronic ballast. Electr Eng 95:403–411CrossRef
6.
go back to reference Hua G, Lee FC (1995) Soft-switching techniques in PWM converters. IEEE Trans Industr Electron 42:595–603CrossRef Hua G, Lee FC (1995) Soft-switching techniques in PWM converters. IEEE Trans Industr Electron 42:595–603CrossRef
7.
go back to reference Nishida Y, Oyama H (2011) Passive PFC converter for energy saving - efficient and cheap diode rectifier topology. In: Proceedings of the IEEE international conference on power electronics and ECCE Asia 2011:1073–1076 Nishida Y, Oyama H (2011) Passive PFC converter for energy saving - efficient and cheap diode rectifier topology. In: Proceedings of the IEEE international conference on power electronics and ECCE Asia 2011:1073–1076
8.
go back to reference Li Q, Andersen MAE, Tomsen OC (2011) Research on power factor correction boost inductor design optimization—efficiency versus power density. In: Proceedings of the IEEE international conference on power electronics and ECCE Asia 2011:728–735 Li Q, Andersen MAE, Tomsen OC (2011) Research on power factor correction boost inductor design optimization—efficiency versus power density. In: Proceedings of the IEEE international conference on power electronics and ECCE Asia 2011:728–735
9.
go back to reference Grigore V (2001) Topological issues in single-phase power factor correction. Dissertation, Helsinki University of Technology Grigore V (2001) Topological issues in single-phase power factor correction. Dissertation, Helsinki University of Technology
10.
go back to reference Prasad AR, Ziogas PD, Manias S (1990) A novel passive wave shaping method for single-phase diode rectifiers. IEEE Trans Industr Electron 37:521–530 Prasad AR, Ziogas PD, Manias S (1990) A novel passive wave shaping method for single-phase diode rectifiers. IEEE Trans Industr Electron 37:521–530
11.
go back to reference Jovanovic MM, Crow DE (1997) Merits and limitations of full-bridge rectifier with LC filter in meeting IEC 1000-3-2 harmonic-limit specifications. IEEE Trans Ind Appl 33:551–557CrossRef Jovanovic MM, Crow DE (1997) Merits and limitations of full-bridge rectifier with LC filter in meeting IEC 1000-3-2 harmonic-limit specifications. IEEE Trans Ind Appl 33:551–557CrossRef
12.
go back to reference Meng T, Yu S, Ben H, Wei G (2014) A Family of multilevel passive clamp circuits with coupled inductor suitable for single-phase isolated full-bridge boost PFC converter. IEEE Trans Power Electron 29:4348–4356 Meng T, Yu S, Ben H, Wei G (2014) A Family of multilevel passive clamp circuits with coupled inductor suitable for single-phase isolated full-bridge boost PFC converter. IEEE Trans Power Electron 29:4348–4356
13.
go back to reference Deng C, Xu D, Chen P, Hu C, Zhang W, Wen Z, Wu X (2014) Integration of both EMI filter and boost inductor for 1-kW PFC converter. IEEE Trans Power Electron 29:5823–5834CrossRef Deng C, Xu D, Chen P, Hu C, Zhang W, Wen Z, Wu X (2014) Integration of both EMI filter and boost inductor for 1-kW PFC converter. IEEE Trans Power Electron 29:5823–5834CrossRef
14.
go back to reference Levron Y, Kim H, Erickson RW (2014) Design of EMI filters having low harmonic distortion in high-power-factor converters. IEEE Trans Power Electron 29:3403–3413CrossRef Levron Y, Kim H, Erickson RW (2014) Design of EMI filters having low harmonic distortion in high-power-factor converters. IEEE Trans Power Electron 29:3403–3413CrossRef
15.
go back to reference Elmore MS, Peterson WA, Sherwood SD (1991) A power factor enhancement circuit. In: Proceedings of the 6th annual applied power electronics conference and exposition, pp 407–414 Elmore MS, Peterson WA, Sherwood SD (1991) A power factor enhancement circuit. In: Proceedings of the 6th annual applied power electronics conference and exposition, pp 407–414
16.
go back to reference Suga I, Kimata M, Ohnishi Y, Uchida R (1993) New switching method for single-phase AC to DC converter. In: Proceedings of the IEEE power conversion conference (PCC-Yokohama), pp 93–98 Suga I, Kimata M, Ohnishi Y, Uchida R (1993) New switching method for single-phase AC to DC converter. In: Proceedings of the IEEE power conversion conference (PCC-Yokohama), pp 93–98
17.
go back to reference Rossetto L, Spiazzi G, Tenti P (2000) Boost PFC with 100 Hz switching frequency providing output voltage stabilization and compliance with EMC standards. IEEE Trans Ind Appl 36:188–193CrossRef Rossetto L, Spiazzi G, Tenti P (2000) Boost PFC with 100 Hz switching frequency providing output voltage stabilization and compliance with EMC standards. IEEE Trans Ind Appl 36:188–193CrossRef
18.
go back to reference Buso S, Spiazzi G (2000) A line-frequency-commutated rectifier complying with IEC 1000-3-2 standard. IEEE Trans Ind Electron 47:501–510CrossRef Buso S, Spiazzi G (2000) A line-frequency-commutated rectifier complying with IEC 1000-3-2 standard. IEEE Trans Ind Electron 47:501–510CrossRef
19.
go back to reference Pomilio JA, Spiazzi G (2002) A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards. IEEE Trans Power Electron 17:963–970CrossRef Pomilio JA, Spiazzi G (2002) A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards. IEEE Trans Power Electron 17:963–970CrossRef
20.
go back to reference Cheng MY, Hsu YC, Chen CH, Hou MK, Tsai MC (2008) An asymmetric PWM for low switching frequency power factor correction circuit. In: Proceedings of the IEEE international conference on industrial technology Cheng MY, Hsu YC, Chen CH, Hou MK, Tsai MC (2008) An asymmetric PWM for low switching frequency power factor correction circuit. In: Proceedings of the IEEE international conference on industrial technology
21.
go back to reference Spiazzi G, Martins EdS, Pomilio JA (2001) A simple line-frequency commutation cell improving power factor and voltage regulation of rectifiers with passive L–C filter. In: Proceedings of the IEEE power electronics specialists conference, pp 724–729 Spiazzi G, Martins EdS, Pomilio JA (2001) A simple line-frequency commutation cell improving power factor and voltage regulation of rectifiers with passive L–C filter. In: Proceedings of the IEEE power electronics specialists conference, pp 724–729
22.
go back to reference Rossetto L, Spiazzi G, Tenti P (2000) Boost PFC with 100 Hz switching frequency providing output voltage stabilization and compliance with EMC standards. IEEE Trans Ind Appl 36:188–193CrossRef Rossetto L, Spiazzi G, Tenti P (2000) Boost PFC with 100 Hz switching frequency providing output voltage stabilization and compliance with EMC standards. IEEE Trans Ind Appl 36:188–193CrossRef
Metadata
Title
Design and analysis of a single-phase low-frequency active power factor correction circuit: a symmetric trapezoidal current waveform approach
Authors
Ming-Kai Hou
Cheng-Hu Chen
Ming-Yang Cheng
Publication date
25-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 3/2016
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-016-0363-8

Other articles of this Issue 3/2016

Electrical Engineering 3/2016 Go to the issue