Skip to main content
Top
Published in: Wireless Personal Communications 1/2020

13-04-2020

Design and Analysis of Three-Way Relay Network Coding Schemes Based Differential Chaos Shift Keying Communication System

Author: Fadhil Sahib Hasan

Published in: Wireless Personal Communications | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a three-way relay network coding schemes based differential chaos shift keying (DCSK) communication system are investigated. Two schemes of physical layer network coding (PLNC) schemes are proposed to communicate between three users. In the first scheme, three users send their information’s using DCSK modulation in different time slots to the relay, then two encoded bits are extracted from the received bits. After that, the relay broadcast the two encoded bits to three users using DCSK modulation in different time slots. To improve the throughput, energy and spectral efficiency of scheme-1, a new model of PNC scheme is developed based on multiple access DCSK (MA-DCSK) and quadrature chaos shift keying (QCSK) systems. In the first phase, the users send their information’s via MA-DCSK, while in the second phase, the relay broadcast the two encoded bits using QCSK system. In both schemes, the BER analytics are derived and compared with the simulated results under AWGN and multipath Rayleigh fading channel. Furthermore, throughput, link bandwidth and energy efficiency are also derived and compared for two schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaddoum, G., Parzysz, F., & Shokraneh, F. (2014). Low-complexity amplify-and-forward relaying protocol for non-coherent chaos-based communication system. IET Communications, 8(13), 1–9.CrossRef Kaddoum, G., Parzysz, F., & Shokraneh, F. (2014). Low-complexity amplify-and-forward relaying protocol for non-coherent chaos-based communication system. IET Communications, 8(13), 1–9.CrossRef
2.
go back to reference Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for multi-user multicarrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(3), 1–14.CrossRef Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for multi-user multicarrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(3), 1–14.CrossRef
3.
go back to reference Kaddoum, G., & El-Hajjar, M. (2015). Analysis of network coding schemes for differential chaos shift keying communication system. arXiv:1505.02851. Kaddoum, G., & El-Hajjar, M. (2015). Analysis of network coding schemes for differential chaos shift keying communication system. arXiv:​1505.​02851.
4.
go back to reference Zhou, Q., Mow, W. H., Zhang, S., & Toupakaris, D. (2016). Two-way decode- and-forward for low complexity wireless relaying: Selective forwarding versus one bit soft forwarding. IEEE Transactions on Wireless Communications, 15(3), 1866–1880.CrossRef Zhou, Q., Mow, W. H., Zhang, S., & Toupakaris, D. (2016). Two-way decode- and-forward for low complexity wireless relaying: Selective forwarding versus one bit soft forwarding. IEEE Transactions on Wireless Communications, 15(3), 1866–1880.CrossRef
5.
go back to reference Katti, S., Gollakota, S., & Katabi, D. (2007). Embracing wireless interference: Analog network coding. ACMSIGCOMM Computer Communication Review, 37(4), 397–408.CrossRef Katti, S., Gollakota, S., & Katabi, D. (2007). Embracing wireless interference: Analog network coding. ACMSIGCOMM Computer Communication Review, 37(4), 397–408.CrossRef
6.
go back to reference Bassoli, R., Marques, H., Rodriguez, J., Shum, K., & Tafazolli, R. (2013). Network coding theory: A survey. IEEE Communications Surveys and Tutorials, 15(4), 1950–1978.CrossRef Bassoli, R., Marques, H., Rodriguez, J., Shum, K., & Tafazolli, R. (2013). Network coding theory: A survey. IEEE Communications Surveys and Tutorials, 15(4), 1950–1978.CrossRef
7.
go back to reference Galias, Z., & Maggio, G. M. (2001). Quadrature chaos-shift keying: Theory and performance analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(12), 1510–1519.MathSciNetMATHCrossRef Galias, Z., & Maggio, G. M. (2001). Quadrature chaos-shift keying: Theory and performance analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(12), 1510–1519.MathSciNetMATHCrossRef
8.
go back to reference Xia, Y., Tse, C. K., & Lau, F. C. M. (2004). Performance of differential chaos shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Transactions on Circuits and Systems II, 51(12), 680–684.CrossRef Xia, Y., Tse, C. K., & Lau, F. C. M. (2004). Performance of differential chaos shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Transactions on Circuits and Systems II, 51(12), 680–684.CrossRef
9.
go back to reference Huang, T., Wang, L., & Xu, W. (2016). Multilevel code-shifted differential-chaos-shift-keying system. IET Communications, 10(10), 1189–1195.CrossRef Huang, T., Wang, L., & Xu, W. (2016). Multilevel code-shifted differential-chaos-shift-keying system. IET Communications, 10(10), 1189–1195.CrossRef
10.
go back to reference Kaddoum, G. (2016). Wireless chaos-based communication systems: A comprehensive survey. IEEE Access, 4, 2621–2648.CrossRef Kaddoum, G. (2016). Wireless chaos-based communication systems: A comprehensive survey. IEEE Access, 4, 2621–2648.CrossRef
11.
go back to reference Hasan, F. S. (2017). Design and analysis of an OFDM-based short reference quadrature chaos shift keying communication system. Wireless Personal Communications, 96(2), 2205–2222.CrossRef Hasan, F. S. (2017). Design and analysis of an OFDM-based short reference quadrature chaos shift keying communication system. Wireless Personal Communications, 96(2), 2205–2222.CrossRef
12.
go back to reference Hasan, F. S. (2017). Design and analysis of an orthogonal chaotic vectors based differential chaos shift keying communication system. Al-Nahrain Journal for Engineering Sciences (NJES), 20(4), 952–958. Hasan, F. S. (2017). Design and analysis of an orthogonal chaotic vectors based differential chaos shift keying communication system. Al-Nahrain Journal for Engineering Sciences (NJES), 20(4), 952–958.
13.
go back to reference Hasan, F. S., & Valenzuela, A. A. (2018). Design and analysis of an OFDM-based orthogonal chaotic vector shift keying communication system. IEEE Access, 6, 46322–46333.CrossRef Hasan, F. S., & Valenzuela, A. A. (2018). Design and analysis of an OFDM-based orthogonal chaotic vector shift keying communication system. IEEE Access, 6, 46322–46333.CrossRef
14.
go back to reference Hasan, F. S., Zaiter, M. J., & Mohammed, R. A. (2019). Design and analysis of a wavelet packet modulation based differential chaos shift keying communication system. Wireless Personal Communications, 109(4), 2439–2450.CrossRef Hasan, F. S., Zaiter, M. J., & Mohammed, R. A. (2019). Design and analysis of a wavelet packet modulation based differential chaos shift keying communication system. Wireless Personal Communications, 109(4), 2439–2450.CrossRef
15.
go back to reference Cai, G., Fang, Y., Han, G., Xue, J., & Chen, G. (2018). Design and analysis of relay-selection strategies for two-way relay network-coded DCSK systems. IEEE Transaction on Vehicular Technology, 67(2), 1258–1271.CrossRef Cai, G., Fang, Y., Han, G., Xue, J., & Chen, G. (2018). Design and analysis of relay-selection strategies for two-way relay network-coded DCSK systems. IEEE Transaction on Vehicular Technology, 67(2), 1258–1271.CrossRef
16.
go back to reference Fang, Y., Xu, J., Wang, L., & Chen, G. (2012). Performance of MIMO relay DCSK-CD systems over Nakagami fading channels. IEEE Transaction on Circuits and Systems, 60(3), 1–11.MathSciNet Fang, Y., Xu, J., Wang, L., & Chen, G. (2012). Performance of MIMO relay DCSK-CD systems over Nakagami fading channels. IEEE Transaction on Circuits and Systems, 60(3), 1–11.MathSciNet
17.
go back to reference Kumar, A., & Sahu, P. R. (2016). Performance analysis of DCSK-SR systems based on best relay selection in multiple MIMO relay environment. International Journal of Electronics and Commun, 70, 18–24.MathSciNetCrossRef Kumar, A., & Sahu, P. R. (2016). Performance analysis of DCSK-SR systems based on best relay selection in multiple MIMO relay environment. International Journal of Electronics and Commun, 70, 18–24.MathSciNetCrossRef
18.
go back to reference Chen, P., Fang, Y., Han, G., & Chen, G. (2016). An efficient transmission scheme for DCSK cooperative communication over multipath fading channel. IEEE Access, 4, 6364–6373.CrossRef Chen, P., Fang, Y., Han, G., & Chen, G. (2016). An efficient transmission scheme for DCSK cooperative communication over multipath fading channel. IEEE Access, 4, 6364–6373.CrossRef
19.
go back to reference Park, M., & Oh, S. K. (2009). An iterative network code optimization for three-way relay channels. In Proceedings of IEEE vehicular technology conference, Anchorage, Alaska, USA (pp. 1–5). Park, M., & Oh, S. K. (2009). An iterative network code optimization for three-way relay channels. In Proceedings of IEEE vehicular technology conference, Anchorage, Alaska, USA (pp. 1–5).
20.
go back to reference Jeon, Y., Kim, Y., Park, M., & Lee, I. (2011). Opportunistic scheduling for three-way relay systems with physical layer network coding. In IEEE 73rd vehicular technology conference (VTC Spring), Yokohama, Japan (pp. 1–5). Jeon, Y., Kim, Y., Park, M., & Lee, I. (2011). Opportunistic scheduling for three-way relay systems with physical layer network coding. In IEEE 73rd vehicular technology conference (VTC Spring), Yokohama, Japan (pp. 1–5).
21.
go back to reference Matthiesen, B., Zappone, A., & Jorswieck, E. A. (2015). Resource allocation for energy-efficient 3-way relay channels. IEEE Transactions on Wireless Communications, 14(8), 4454–4468.CrossRef Matthiesen, B., Zappone, A., & Jorswieck, E. A. (2015). Resource allocation for energy-efficient 3-way relay channels. IEEE Transactions on Wireless Communications, 14(8), 4454–4468.CrossRef
22.
go back to reference Li, W., Li, G., Zhu, S., & Liu, T. (2013). On the performance of multi-way relay communications via complex field network coding. In IEEE computing, communications and IT applications conference (ComComAp), Hong Kong China, (pp. 180–185). Li, W., Li, G., Zhu, S., & Liu, T. (2013). On the performance of multi-way relay communications via complex field network coding. In IEEE computing, communications and IT applications conference (ComComAp), Hong Kong China, (pp. 180–185).
23.
go back to reference Kulhandjian, M., D’Amours, C., & Kulhandjian, H. (2018). Multi-way physical-layer network coding via uniquely decodable codes. Hindawi Wireless Communications and Mobile Computing, 2018, 1–8.CrossRef Kulhandjian, M., D’Amours, C., & Kulhandjian, H. (2018). Multi-way physical-layer network coding via uniquely decodable codes. Hindawi Wireless Communications and Mobile Computing, 2018, 1–8.CrossRef
24.
go back to reference Wang, H., & Chen, Q. (2019). LDPC based network coded cooperation design for multi-way relay networks. IEEE Access, 7, 62300–62311.CrossRef Wang, H., & Chen, Q. (2019). LDPC based network coded cooperation design for multi-way relay networks. IEEE Access, 7, 62300–62311.CrossRef
25.
go back to reference Tam, W. M., Lau, F. C. M., & Tse, C. K. (2003). Analysis of bit error rates for multiple access CSK and DCSK communication systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(5), 702–707.CrossRef Tam, W. M., Lau, F. C. M., & Tse, C. K. (2003). Analysis of bit error rates for multiple access CSK and DCSK communication systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(5), 702–707.CrossRef
26.
go back to reference Li, H., Dai, X., & Xu, P. (2004). A CDMA based multiple-access scheme for DCSK. In IEEE 6th CAS symposium on emerging technologies: Mobile and wireless communication, Shanghai (Vol. 1, pp. 313–316). Li, H., Dai, X., & Xu, P. (2004). A CDMA based multiple-access scheme for DCSK. In IEEE 6th CAS symposium on emerging technologies: Mobile and wireless communication, Shanghai (Vol. 1, pp. 313–316).
27.
go back to reference Zhou, Z., & Zhou, T. (2008). Performance of multiple-access DCSK communication over a multipath fading channel with delay spread. Circuits Systems and Signal Processing, 27(4), 507–518.MathSciNetMATHCrossRef Zhou, Z., & Zhou, T. (2008). Performance of multiple-access DCSK communication over a multipath fading channel with delay spread. Circuits Systems and Signal Processing, 27(4), 507–518.MathSciNetMATHCrossRef
28.
go back to reference Proakis, J. G., & Salehi, M. (2007). Digital communications. New York, NY: McGraw-Hill. Proakis, J. G., & Salehi, M. (2007). Digital communications. New York, NY: McGraw-Hill.
29.
go back to reference Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.MATHCrossRef Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.MATHCrossRef
30.
go back to reference Marple, S. L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600–2603.MATHCrossRef Marple, S. L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600–2603.MATHCrossRef
31.
go back to reference Proakis, J. G., & Manolakis, D. G. (2006). Digital signal processing: Principles, algorithms and applications (4th ed.). Upper Saddle River, NJ: Prentice-Hill. Proakis, J. G., & Manolakis, D. G. (2006). Digital signal processing: Principles, algorithms and applications (4th ed.). Upper Saddle River, NJ: Prentice-Hill.
32.
go back to reference Ma, W., Du, J., & Xue, H. (2017). Design of reverse-DCSK for chaos based communication system. In 3rd IEEE international conference on computer and communications (pp. 743–747). Ma, W., Du, J., & Xue, H. (2017). Design of reverse-DCSK for chaos based communication system. In 3rd IEEE international conference on computer and communications (pp. 743–747).
Metadata
Title
Design and Analysis of Three-Way Relay Network Coding Schemes Based Differential Chaos Shift Keying Communication System
Author
Fadhil Sahib Hasan
Publication date
13-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07348-5

Other articles of this Issue 1/2020

Wireless Personal Communications 1/2020 Go to the issue