2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Recent Innovations in Computing
One of the crucial components of each bioimpedance measuring device is a constant current source. Finite element numerical device simulation was used to analyze track to track capacitances and compared to measurements on developed PCB with soldering elements. Here, we present an analysis based on a modified circuit of a single constant current source. Finite element numerical system simulation was used to evaluate track to track capacitances and compared to measurements on built PCB without soldering elements. One of the most important components of the bioelectric impedance devices and Bio-Electrical Impedance Analyzer (BIA) is the current source circuit. There are many types of circuits, such as current source, enhanced current source, general impedance convertor, Wien bridge circuit, voltage pick-up amplifier. This paper presents the modules of bioimpedance creation of software.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Bera, T.K.: Bioelectrical impedance methods for non-invasive health monitoring: A review, hindawi publishing corporation, J. Med. Eng. 1–28 (2014) Bera, T.K.: Bioelectrical impedance methods for non-invasive health monitoring: A review, hindawi publishing corporation, J. Med. Eng. 1–28 (2014)
2.
go back to reference Khan, M., Guha, S.K.: Prediction of electrical impedance parameters for the simulated leg segment of an aircraft pilot under G-stress. Aviat. space and environ. med. 73(6), 558–564 (2002a) Khan, M., Guha, S.K.: Prediction of electrical impedance parameters for the simulated leg segment of an aircraft pilot under G-stress. Aviat. space and environ. med.
73(6), 558–564 (2002a)
3.
go back to reference Young, R.E., Sinha D.P.: Bioelectrical-impedance analysis as a measure of body composition in a west Indian population. The Am. J. Clin. Nutr. 1045–50 (1992) Young, R.E., Sinha D.P.: Bioelectrical-impedance analysis as a measure of body composition in a west Indian population. The Am. J. Clin. Nutr. 1045–50 (1992)
4.
go back to reference Brajesh, K.m., Kirti, Pal., Khan, M.: Assessment of human joints using bioelectrical impedance technique. J. Stud. Indian Place Names, ISSN 2394-3114. 40(10), 272–285, March-26- (2020) Brajesh, K.m., Kirti, Pal., Khan, M.: Assessment of human joints using bioelectrical impedance technique. J. Stud. Indian Place Names, ISSN 2394-3114.
40(10), 272–285, March-26- (2020)
5.
go back to reference Linda, B., Houtkooper, Lohman, T.G., Going, S.B., Hall, M.C.: Validity of bioelectric impedance for body composition assessment in children. Am. Physiol. Soc. 814–821 (1989) Linda, B., Houtkooper, Lohman, T.G., Going, S.B., Hall, M.C.: Validity of bioelectric impedance for body composition assessment in children. Am. Physiol. Soc. 814–821 (1989)
6.
go back to reference Kushner, R.F., Kunigk, A., Alspaugh, M., Andronis, P.T.: Validation of bioelectric-impedance analysis as a measurement of change in body composition in obesity. Am. Soc. Clin. Nutr. 219–223 (1990) Kushner, R.F., Kunigk, A., Alspaugh, M., Andronis, P.T.: Validation of bioelectric-impedance analysis as a measurement of change in body composition in obesity. Am. Soc. Clin. Nutr. 219–223 (1990)
7.
go back to reference Khan, M., Mahfooz, S., Khan, G.P.: Development of bioelectrical impedance analysis equations (BIA) equations to predict body composition of indian males. WAP J. Vol. 3, 14–33, Jan (2013) Khan, M., Mahfooz, S., Khan, G.P.: Development of bioelectrical impedance analysis equations (BIA) equations to predict body composition of indian males. WAP J. Vol.
3, 14–33, Jan (2013)
8.
go back to reference Gabriel, C.S., Gabriel, E., Corthout.: The dielectric properties of biological tissues: I.Literature survey. Phys. Med. Biol. 41(11), 2231 (1996) Gabriel, C.S., Gabriel, E., Corthout.: The dielectric properties of biological tissues: I.Literature survey. Phys. Med. Biol.
41(11), 2231 (1996)
9.
go back to reference Miklavčič, D., Pavšelj, N., Hart, F.X.: Electric properties of tissues. Wiley Encyclopedia biomed, Eng (2006) CrossRef Miklavčič, D., Pavšelj, N., Hart, F.X.: Electric properties of tissues. Wiley Encyclopedia biomed, Eng (2006)
CrossRef
10.
go back to reference Montal, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Nat. Acad. Sci. 69(12), 3561–3566 (1972) CrossRef Montal, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Nat. Acad. Sci.
69(12), 3561–3566 (1972)
CrossRef
11.
go back to reference Min, M., et al: An implantable analyzer of bio-impedance dynamics: mixed-signal approach [telemetric monitors]. Instrum. Meas., IEEE Trans. 51(4), 674–678 (2002) Min, M., et al: An implantable analyzer of bio-impedance dynamics: mixed-signal approach [telemetric monitors]. Instrum. Meas., IEEE Trans.
51(4), 674–678 (2002)
12.
go back to reference Gabriel, S., Lau, R., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 22–51 (1996) Gabriel, S., Lau, R., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol.
41(11), 22–51 (1996)
13.
go back to reference Segal, K.R., et al.: Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. Am. J. clin. Nutr (1991) CrossRef Segal, K.R., et al.: Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. Am. J. clin. Nutr (1991)
CrossRef
14.
go back to reference Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr. 44(3), 417–424 (1986) CrossRef Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr.
44(3), 417–424 (1986)
CrossRef
15.
go back to reference Nebuya, S., et al.: Estimation of the size of air emboli detectable by electrical impedance measurement. Med. Biol. Eng. Comput. 42(1), 142–144 (2004) CrossRef Nebuya, S., et al.: Estimation of the size of air emboli detectable by electrical impedance measurement. Med. Biol. Eng. Comput.
42(1), 142–144 (2004)
CrossRef
16.
go back to reference Dudykevych, T., et al.: Impedance analyzer module for EIT and spectroscopy using undersampling. Physio. Meas. 22(1), 19 (2001) CrossRef Dudykevych, T., et al.: Impedance analyzer module for EIT and spectroscopy using undersampling. Physio. Meas.
22(1), 19 (2001)
CrossRef
17.
go back to reference Ayliffe, H.E., Bruno Frazier, A., Rabbitt, R.: Electric impedance spectroscopy using microchannels with integrated metal electrodes. Microelectromech. Syst. J. 8(1), 50–57 (1999) Ayliffe, H.E., Bruno Frazier, A., Rabbitt, R.: Electric impedance spectroscopy using microchannels with integrated metal electrodes. Microelectromech. Syst. J.
8(1), 50–57 (1999)
18.
go back to reference Khan, M., Mehfuz, S., Khan, G.P.: Bioelectrical impedance analysis (BIA) for assessing TBW and FFM of indian females. Int. J. Comput. Eng. Res. 4(3), 1–17 (2014) Khan, M., Mehfuz, S., Khan, G.P.: Bioelectrical impedance analysis (BIA) for assessing TBW and FFM of indian females. Int. J. Comput. Eng. Res.
4(3), 1–17 (2014)
19.
go back to reference Pawar, C., Khan, M., Saini, J.P.: Design and analysis of adjustable constant current source with multi-frequency for measurement of bioelectrical impedance. Int. J. Appl. Eng. Res. 13(1), 262–267 (2018) Pawar, C., Khan, M., Saini, J.P.: Design and analysis of adjustable constant current source with multi-frequency for measurement of bioelectrical impedance. Int. J. Appl. Eng. Res.
13(1), 262–267 (2018)
20.
go back to reference Khan, M., Vashisth, S., Vijay, R., Salhan, A.K.: Non-invasive measurement and subsequent analysis of human carotid pulse for ground-based simulation of G-stress. Int. J. Bioinf. Res. Appl. 12(3), 227–237 (2016) CrossRef Khan, M., Vashisth, S., Vijay, R., Salhan, A.K.: Non-invasive measurement and subsequent analysis of human carotid pulse for ground-based simulation of G-stress. Int. J. Bioinf. Res. Appl.
12(3), 227–237 (2016)
CrossRef
21.
go back to reference Munoz, D.R., Moreno, J.S., Escriva, C.R., Berga, S.C., Anton, A.E.N.: Constant current drive for resistive sensors based on generalized impedance converter. IEEE Trans. Instrum. Meas. 57(10), 2290–2296 Munoz, D.R., Moreno, J.S., Escriva, C.R., Berga, S.C., Anton, A.E.N.: Constant current drive for resistive sensors based on generalized impedance converter. IEEE Trans. Instrum. Meas.
57(10), 2290–2296
22.
go back to reference Brajesh, K.m., Pal, K., Khan, M.: Analysis of bioelectrical impedance measurements and Role of mathematical modeling in bone fracture healing. Nat. Conf. Rob. Mechatron. (NCORM2020), Jamia Millia Islamia, New Delhi March 3rd–4th, (2020) Brajesh, K.m., Pal, K., Khan, M.: Analysis of bioelectrical impedance measurements and Role of mathematical modeling in bone fracture healing. Nat. Conf. Rob. Mechatron. (NCORM2020), Jamia Millia Islamia, New Delhi March 3rd–4th, (2020)
23.
go back to reference Andrzejowski, P., Giannoudis, P.V.: The ‘diamond concept’ for long bone non-union management. J. Orthopaedics. Traumatology. 20(1), (2019) Andrzejowski, P., Giannoudis, P.V.: The ‘diamond concept’ for long bone non-union management. J. Orthopaedics. Traumatology.
20(1), (2019)
24.
go back to reference Ghiasi, M.S., Chen, J.E., Rodriguez, E.K., Vaziri, A., Nazarian, A.: Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskeletal Disorders 20(1), (2019) Ghiasi, M.S., Chen, J.E., Rodriguez, E.K., Vaziri, A., Nazarian, A.: Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskeletal Disorders
20(1), (2019)
25.
go back to reference Pawar, C., Khan, M., Saini, J.P.: Bioelectrical impedance measuring device based on principle of multifrequency and multi Segments. J. Stud. Indian Place Names, ISSN 2394-3114, 40(10), 231–237, March-05- (2020) Pawar, C., Khan, M., Saini, J.P.: Bioelectrical impedance measuring device based on principle of multifrequency and multi Segments. J. Stud. Indian Place Names, ISSN 2394-3114,
40(10), 231–237, March-05- (2020)
26.
go back to reference Kashif, I.K., Sherwani, Kumar, N., Chemori, A., Khan, M., Mohammed, S.: RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Rob. Auton. Syst. Vol. 124:103354, 2020. Kashif, I.K., Sherwani, Kumar, N., Chemori, A., Khan, M., Mohammed, S.: RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Rob. Auton. Syst. Vol.
124:103354, 2020.
27.
go back to reference Pawar, C.: Assessment of human arm bioelectrical impedance using microcontroller based system. J. Int. J. Integr Eng. 12(4), 172–181, Apr-30-(2020) Pawar, C.: Assessment of human arm bioelectrical impedance using microcontroller based system. J. Int. J. Integr Eng.
12(4), 172–181, Apr-30-(2020)
28.
go back to reference Khan, M., Sirdeshmukh, S.P.S.M.A., Javed, K.: Evaluation of bone fracture in an animal model using bio-electrical impedance analysis. Perspect. Sci. Vol. 8, 567–569, (2016) Khan, M., Sirdeshmukh, S.P.S.M.A., Javed, K.: Evaluation of bone fracture in an animal model using bio-electrical impedance analysis. Perspect. Sci. Vol.
8, 567–569, (2016)
29.
go back to reference Khan, M., Guha, S.K.: Electrical impedance analysis for simulated arm blood pooling of an aircraft pilot under G-Stress. Aviat. Space Environ. Med. 74(4), 406 (2002b) Khan, M., Guha, S.K.: Electrical impedance analysis for simulated arm blood pooling of an aircraft pilot under G-Stress. Aviat. Space Environ. Med.
74(4), 406 (2002b)
30.
go back to reference Reggie, O.H., Khan, M., Pohlman, R.L., Schlub, J.: Leg resistance training: effects upon cardi-ovascular fitness (vo2 peak) and skeletal muscle myoplasticity. Int. J. Exercise Physiol. 7(5), 27–43 (2004) Reggie, O.H., Khan, M., Pohlman, R.L., Schlub, J.: Leg resistance training: effects upon cardi-ovascular fitness (vo2 peak) and skeletal muscle myoplasticity. Int. J. Exercise Physiol.
7(5), 27–43 (2004)
- Title
- Design and Development of Software and Hardware Modules of Bioimpedance System Using LTSpice
- DOI
- https://doi.org/10.1007/978-981-15-8297-4_16
- Authors:
-
K. M. Brajesh
Kirti Pal
Munna Khan
- Publisher
- Springer Singapore
- Sequence number
- 16