Skip to main content
Top
Published in:

2021 | OriginalPaper | Chapter

Design and Modeling of Fuel Cell Hybrid Electric Vehicle for Urban Transportation

Authors : Mallikarjunareddy Bandi, Naveenkumar Marati, Balraj Vaithilingam, Kathirvel Karuppazhagi

Published in: Electric Vehicles

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is a need of integration between fuel cell (FC) and battery to help electric vehicle to work under cold start, acceleration and deceleration modes, which are problems unique to an electric vehicle application. The dynamics of FC is slower compared with the electric vehicle load dynamics and there is a need to design suitable converters for interfacing auxiliary source during this period. The converters interfacing the auxiliary power source (battery) need to have faster dynamic response so that it can interface the battery with DC bus bar. In the fuel cell hybrid electric vehicle (FCHEV), during cold start mode, the battery supplies to the DC bus bar during the heat up process. In this article, the architecture of FCHEV has been developed using a resonant DAB-IBDC converter with symmetric CLLC. The architecture of FCHEV had analyzed and modeled in this manuscript. The model of FC accounting for material conservation, delay effects due to fuel and oxidant, and losses has also developed to get more accurate FC output voltage. The operation of the FCHEV during cold start, normal, acceleration and deceleration conditions studied in detail. Furthermore, simulation results of the designed 1.4 kW EV verify with theoretical analysis in the four modes for urban transport applications especially for three-wheeler applications like e-rickshaw.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Cook, Introduction to fuel cells and hydrogen technology. Eng. Sci. Educ. J. 11(6), 205–216 (2002)CrossRef B. Cook, Introduction to fuel cells and hydrogen technology. Eng. Sci. Educ. J. 11(6), 205–216 (2002)CrossRef
2.
go back to reference N.H. Jafri, S. Gupta, An overview of FCs application in transportation, in IEEE Transportation Electrification Conference and Expo (Asia-Pacific (ITEC Asia-Pacific), Busan), pp. 129–133 (2016) N.H. Jafri, S. Gupta, An overview of FCs application in transportation, in IEEE Transportation Electrification Conference and Expo (Asia-Pacific (ITEC Asia-Pacific), Busan), pp. 129–133 (2016)
3.
go back to reference Fuel Cell Handbook, 7th edn., EG&G Services, Inc., Science Applications International Corporation, DOE, Office of Fossil Energy, National Energy Technology Laboratory (2004) Fuel Cell Handbook, 7th edn., EG&G Services, Inc., Science Applications International Corporation, DOE, Office of Fossil Energy, National Energy Technology Laboratory (2004)
4.
go back to reference Wikipedia, The Free Encyclopaedia, List of Fuel Cell Vehicles. Accessed 24 Mar 2019 Wikipedia, The Free Encyclopaedia, List of Fuel Cell Vehicles. Accessed 24 Mar 2019
5.
go back to reference Wikipedia, The Free Encyclopaedia, Fuel Cell Vehicle. Accessed 24 March 2019 Wikipedia, The Free Encyclopaedia, Fuel Cell Vehicle. Accessed 24 March 2019
6.
go back to reference S. Thomas, M. Zalbowitz, Fuel Cells-Green Power (Los Alamos National Laboratory, Los Alamos, New Mexico) S. Thomas, M. Zalbowitz, Fuel Cells-Green Power (Los Alamos National Laboratory, Los Alamos, New Mexico)
7.
go back to reference F.A. Farret, M.G. Simoes, Power plants with fuel cells, in Integration of Alternative Sources of Energy (Wiley-IEEE Press, 2006), pp. 159–197 F.A. Farret, M.G. Simoes, Power plants with fuel cells, in Integration of Alternative Sources of Energy (Wiley-IEEE Press, 2006), pp. 159–197
8.
go back to reference M.H. Nehrir, C. Wang, Principles of operation of fuel cells, in Modeling and Control of Fuel Cells: Distributed Generation Applications (Wiley-IEEE Press, 2009), pp. 29–56 M.H. Nehrir, C. Wang, Principles of operation of fuel cells, in Modeling and Control of Fuel Cells: Distributed Generation Applications (Wiley-IEEE Press, 2009), pp. 29–56
9.
go back to reference P.J.H. Wingelaar, J.L. Duarte, M.A.M. Hendrix, Dynamic characteristics of PEM fuel cells, in IEEE 36th Power Electronics Specialists Conference (Recife, 2005), pp. 1635–1641 P.J.H. Wingelaar, J.L. Duarte, M.A.M. Hendrix, Dynamic characteristics of PEM fuel cells, in IEEE 36th Power Electronics Specialists Conference (Recife, 2005), pp. 1635–1641
10.
go back to reference J. Snoussi, S.B. Elghali, M. Benbouzid, M.F. Mimouni, Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337–9346 (2018)CrossRef J. Snoussi, S.B. Elghali, M. Benbouzid, M.F. Mimouni, Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337–9346 (2018)CrossRef
11.
go back to reference D. Zhou, A. AlDurra, I. Matraji, A. Ravey, F. Gao, Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method. IEEE Trans. Industr. Electron. 65(8), 6787–6799 (2018)CrossRef D. Zhou, A. AlDurra, I. Matraji, A. Ravey, F. Gao, Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method. IEEE Trans. Industr. Electron. 65(8), 6787–6799 (2018)CrossRef
12.
go back to reference Y. Han, Q. Li, T. Wang, W. Chen, L. Ma, Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(1), 296–305 (2018)CrossRef Y. Han, Q. Li, T. Wang, W. Chen, L. Ma, Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(1), 296–305 (2018)CrossRef
13.
go back to reference Q. Li, T. Wang, C. Dai, W. Chen, L. Ma, Power management strategy based on adaptive droop control for a fuel cell-battery-super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(7), 5658–5670 (2018)CrossRef Q. Li, T. Wang, C. Dai, W. Chen, L. Ma, Power management strategy based on adaptive droop control for a fuel cell-battery-super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(7), 5658–5670 (2018)CrossRef
14.
go back to reference S.S. Yadav, K.S. Sandhu, A grid connected hybrid PV/fuel cell/battery using five level PWM inverter, in 2018 International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR) (Ernakulam, 2018), pp. 1–5 S.S. Yadav, K.S. Sandhu, A grid connected hybrid PV/fuel cell/battery using five level PWM inverter, in 2018 International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR) (Ernakulam, 2018), pp. 1–5
15.
go back to reference A.S. Leger, A multidisciplinary undergraduate alternative energy engineering course. IEEE Trans. Educ. 62(1), 34–39 (2019)CrossRef A.S. Leger, A multidisciplinary undergraduate alternative energy engineering course. IEEE Trans. Educ. 62(1), 34–39 (2019)CrossRef
16.
go back to reference S. Habib, M.M. Khan, F. Abbas, L. Sang, M.U. Shahid, H. Tang, A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(2), 13866–13890 (2018)CrossRef S. Habib, M.M. Khan, F. Abbas, L. Sang, M.U. Shahid, H. Tang, A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(2), 13866–13890 (2018)CrossRef
17.
go back to reference D. Zhou, Y. Wu, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation prediction of PEM fuel cell stack based on multi physical aging model with particle filter approach. IEEE Trans. Ind. Appl. 53(4), 4041–4052 (2017)CrossRef D. Zhou, Y. Wu, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation prediction of PEM fuel cell stack based on multi physical aging model with particle filter approach. IEEE Trans. Ind. Appl. 53(4), 4041–4052 (2017)CrossRef
18.
go back to reference C.R. Aguiar, G.H.F. Fuzato, R.F.Q. Magossi, R.V.A. Neves, R.Q. Machado, A new method to manage the fuel cell initialization. IEEE Trans. Ind. Appl. 54(5), 5187–5195 (2018)CrossRef C.R. Aguiar, G.H.F. Fuzato, R.F.Q. Magossi, R.V.A. Neves, R.Q. Machado, A new method to manage the fuel cell initialization. IEEE Trans. Ind. Appl. 54(5), 5187–5195 (2018)CrossRef
19.
go back to reference P.J. Tritschler, E. Rullire, S. Bacha, Emulation of fuel cell systems, in The XIX International Conference on Electrical Machines—ICEM 2010 (Rome, 2010), pp. 1–5 P.J. Tritschler, E. Rullire, S. Bacha, Emulation of fuel cell systems, in The XIX International Conference on Electrical Machines—ICEM 2010 (Rome, 2010), pp. 1–5
20.
go back to reference J.C.L. Haj, M.L. Agerskov, M.F. Jensen, P. Lading, Next generation range extension—2 glimpses of the future, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (Barcelona, 2013), pp. 1–8 J.C.L. Haj, M.L. Agerskov, M.F. Jensen, P. Lading, Next generation range extension—2 glimpses of the future, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (Barcelona, 2013), pp. 1–8
21.
go back to reference J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, New York, 2000) J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, New York, 2000)
22.
go back to reference D. Linden, T.B. Reddy, Battery Handbook (McGraw Hill Publisher, 2001) D. Linden, T.B. Reddy, Battery Handbook (McGraw Hill Publisher, 2001)
23.
go back to reference L.E. Lesster, Fuel cell power electronics. Fuel Cells Bull. 3(25), 5–9 (2000)CrossRef L.E. Lesster, Fuel cell power electronics. Fuel Cells Bull. 3(25), 5–9 (2000)CrossRef
24.
go back to reference R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Norwell, MA, USA, Kluwer, 2001)CrossRef R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Norwell, MA, USA, Kluwer, 2001)CrossRef
25.
go back to reference M. Kabalo, B. Blunier, D. Bouquain, A. Miraoui, State-of-the-art of dc/dc converters for fuel cell vehicles, in IEEE Vehicle Power and Propulsion Conference (Lille, 2010), pp. 1–6 M. Kabalo, B. Blunier, D. Bouquain, A. Miraoui, State-of-the-art of dc/dc converters for fuel cell vehicles, in IEEE Vehicle Power and Propulsion Conference (Lille, 2010), pp. 1–6
27.
go back to reference V.F. Pires, R.E. Cadaval, D.I. Roasto, J.F. Martins, Power converter interfaces for electrochemical energy storage systems—a review. Energy Convers. Manage. 86(2), 453–475 (2014)CrossRef V.F. Pires, R.E. Cadaval, D.I. Roasto, J.F. Martins, Power converter interfaces for electrochemical energy storage systems—a review. Energy Convers. Manage. 86(2), 453–475 (2014)CrossRef
28.
go back to reference M.H. Todorovic, L. Palma, P. Enjeti, Design of a wide input range dc/dc converter with a robust power control scheme suitable for fuel cell power conversion, in Proceedings of Anaheim IEEE Application Power Electronics Conference and Exposition, pp. 374–379 M.H. Todorovic, L. Palma, P. Enjeti, Design of a wide input range dc/dc converter with a robust power control scheme suitable for fuel cell power conversion, in Proceedings of Anaheim IEEE Application Power Electronics Conference and Exposition, pp. 374–379
29.
go back to reference H. Tarzamni, E. Babaei, A.Z. Gharehkoushan, M. Sabahi, Interleaved full ZVZCS dc/dc boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electron. 10(7), 835–845 (2017)CrossRef H. Tarzamni, E. Babaei, A.Z. Gharehkoushan, M. Sabahi, Interleaved full ZVZCS dc/dc boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electron. 10(7), 835–845 (2017)CrossRef
30.
go back to reference O. Hegazy, J. Van Mierlo, P. Lataire, Analysis, control and implementation of a high-power interleaved boost converter for fuel cell hybrid electric vehicle. Int. Rev. Electr. Eng. 6(4), 1739–1747 (2011) O. Hegazy, J. Van Mierlo, P. Lataire, Analysis, control and implementation of a high-power interleaved boost converter for fuel cell hybrid electric vehicle. Int. Rev. Electr. Eng. 6(4), 1739–1747 (2011)
31.
go back to reference J. Xie, X. Zhang, C. Zhang, C. Wang, Research on bidirectional dc/dc converter for a standalone photovoltaic hybrid energy storage system, in Asia-Pacific Power Energy Engineering Conference China (Chengdu, 2010), pp. 1–4 J. Xie, X. Zhang, C. Zhang, C. Wang, Research on bidirectional dc/dc converter for a standalone photovoltaic hybrid energy storage system, in Asia-Pacific Power Energy Engineering Conference China (Chengdu, 2010), pp. 1–4
32.
go back to reference S. Malo, R. Grino, Design, construction, and control of a standalone energy-conditioning system for PEM-type fuel cells. IEEE Trans. Power Electron. 25(10), 2496–2506 (2010)CrossRef S. Malo, R. Grino, Design, construction, and control of a standalone energy-conditioning system for PEM-type fuel cells. IEEE Trans. Power Electron. 25(10), 2496–2506 (2010)CrossRef
33.
go back to reference M.A. Abdullah, A.H.M. Yatim, C.W. Tan, A.S. Samosir, Control of a bidirectional converter to interface ultra-capacitor with renewable energy sources, in Proceedings of the IEEE International Conference on Industrial Technology (Cape Town, South Africa, 2013), pp. 673–678 M.A. Abdullah, A.H.M. Yatim, C.W. Tan, A.S. Samosir, Control of a bidirectional converter to interface ultra-capacitor with renewable energy sources, in Proceedings of the IEEE International Conference on Industrial Technology (Cape Town, South Africa, 2013), pp. 673–678
34.
go back to reference V.M. Iyer, S. Gulur, S. Bhattacharya, Small-signal stability assessment and active stabilization of a bidirectional battery charger. IEEE Trans. Ind. Appl. 55(1), 563–574 (2019)CrossRef V.M. Iyer, S. Gulur, S. Bhattacharya, Small-signal stability assessment and active stabilization of a bidirectional battery charger. IEEE Trans. Ind. Appl. 55(1), 563–574 (2019)CrossRef
35.
go back to reference A. Filba, S. Busquets, J. Nicolas, J. Bordonau, Operating principle and performance optimization of a three-level NPC dual-active-bridge dc/dc converter. IEEE Trans. Industr. Electron. 63(2), 678–690 (2016)CrossRef A. Filba, S. Busquets, J. Nicolas, J. Bordonau, Operating principle and performance optimization of a three-level NPC dual-active-bridge dc/dc converter. IEEE Trans. Industr. Electron. 63(2), 678–690 (2016)CrossRef
36.
go back to reference B. Zhao, Q. Song, W. Liu, Power characterization of isolated bidirectional dual active bridge dc/dc converter with dual phase shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)CrossRef B. Zhao, Q. Song, W. Liu, Power characterization of isolated bidirectional dual active bridge dc/dc converter with dual phase shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)CrossRef
37.
go back to reference H. Bai, C. Mi, Eliminate reactive power and increase system efficiency of isolated bidirectional dual active bridge dc/dc converters using novel dual phase shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)CrossRef H. Bai, C. Mi, Eliminate reactive power and increase system efficiency of isolated bidirectional dual active bridge dc/dc converters using novel dual phase shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)CrossRef
38.
go back to reference S. Inoue, H. Akagi, A bidirectional isolated dc/dc converter as a core circuit of the next-generation medium voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)CrossRef S. Inoue, H. Akagi, A bidirectional isolated dc/dc converter as a core circuit of the next-generation medium voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)CrossRef
39.
go back to reference H. Bai, C. Wang, S. Gargies, Operation, design and control of dual H-bridge based isolated bidirectional dc/dc converter. IET Power Electron. 1(4), 507–517 (2008)CrossRef H. Bai, C. Wang, S. Gargies, Operation, design and control of dual H-bridge based isolated bidirectional dc/dc converter. IET Power Electron. 1(4), 507–517 (2008)CrossRef
40.
go back to reference D. Sha, F. You, X. Wang, A high efficiency current-fed semi dual active bridge dc/dc converter for low input voltage applications. IEEE Trans. Industr. Electron. 63(4), 2155–2164 (2016) D. Sha, F. You, X. Wang, A high efficiency current-fed semi dual active bridge dc/dc converter for low input voltage applications. IEEE Trans. Industr. Electron. 63(4), 2155–2164 (2016)
41.
go back to reference F. Krismer, J. Biela, J.W. Kolar, A comparative evaluation of isolated bidirectional dc/dc converters with wide input and output voltage range, in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference (Kowloon, 2005), pp. 599–606 F. Krismer, J. Biela, J.W. Kolar, A comparative evaluation of isolated bidirectional dc/dc converters with wide input and output voltage range, in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference (Kowloon, 2005), pp. 599–606
42.
go back to reference F. Krismer, J.W. Kolar, Efficiency optimized high current dual active bridge converter for automotive applications. IEEE Trans. Industr. Electron. 59(7), 2745–2760 (2012)CrossRef F. Krismer, J.W. Kolar, Efficiency optimized high current dual active bridge converter for automotive applications. IEEE Trans. Industr. Electron. 59(7), 2745–2760 (2012)CrossRef
Metadata
Title
Design and Modeling of Fuel Cell Hybrid Electric Vehicle for Urban Transportation
Authors
Mallikarjunareddy Bandi
Naveenkumar Marati
Balraj Vaithilingam
Kathirvel Karuppazhagi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9251-5_1