Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Design and Simulation of Array Cells of Mixed Sensor Processors for Intensity Transformation and Analog-Digital Coding in Machine Vision

Authors : Vladimir G. Krasilenko, Alexander A. Lazarev, Diana V. Nikitovich

Published in: Machine Vision and Navigation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The urgent need to create video sensors and processors for parallel (simultaneous by pixel) image processing with advanced functionality and multichannel picture outputs is shown in the chapter. We consider perspective spheres and areas of application of such sensor processors, in particular, for hardware high-performance architectures of neural networks, convolutional neural structures, parallel matrix-matrix multipliers, and special processor systems. We show and analyze the theoretical foundations, the mathematical apparatus of the matrix and continuous logic, and their basic operations, show their functional completeness, and evaluate their advantages and prospects for application in the design of biologically inspired devices and systems for processing and analysis of array signals. We show that some functions of continuous logic, including operations of normalized equivalence of vector and matrix signals, the operation of a limited difference in continuous logic, are a powerful basis for designing improved smart micro-cells for analog transformations and analog-digital encodings. In the next sections of the chapter, we consider in more detail the design and modeling aspects of such micro-basic cells and continuously logical high-speed ADCs based on them. The picture-type ADC consists of an array of parallel operating channels, each of which is a basic microcell or a set of them. The basic microcell of a 2D ADC structure consists of several digital-analog cells (DC), which is made on 15–35 CMOS transistors. For an iterative type ADC, only one DC cell is needed, which is DC-(G), and it additionally contains a sample and hold device (SHD). In this case, the entire base microcell can be performed on just 35 CMOS transistors. A single ADC channel cell with iteration has a serial-parallel output code. For a non-iterative-type ADC, its base microcell may consist of such a quantity of DC, which depends on the digit capacity of the code. To simulate the proposed schemes, we used OrCAD, and the results are presented below. Conversion time with 6–8-bit binary codes or Gray codes and an input photocurrent range of 0.1–24 μA is 20–30 ns at a supply voltage of 1.8–3.3 V. If the maximum input current is 4 μA, then for ADC with iteration, total power consumption was only 50–100 μW. Low power consumption at such a supply voltage and good dynamic characteristics (the digitization frequency even for 1.5 μm CMOS technologies is 40–50 MHz) shows good prospects since the structure of the linear array of ADCs and its microcells is very simple. The conversion frequency can be increased ten times with more advanced CMOS transistors. Thus, the proposed ADC based on CL BC and CM are promising for creating photoelectric structures with matrix operands, digital optoelectronic processors, linear and matrix image processors (IP), and other neural-like structures that are necessary for neural networks and neuro fuzzy controllers. In the chapter, we consider a generalized method of designing devices for nonlinear transformation of the photocurrent intensity using a set of similar basic modified cells and their circuits implemented using traditional CMOS technology. To implement the required nonlinear transformation function, we use the decomposition method. The type of synthesized functions is determined by the choice of suitable parameters, which are specified as constants or as parameters with which you can choose or change the type of nonlinear transformation. In this chapter, we also show the need for different types of nonlinear intensity conversion of photocurrents and different codes (gray, binary) for AD conversion in such parallel sensor devices and systems, especially for implementing various types of activation functions in hardware implementations of neural networks, consider the use of such parallel matrix arrays to create progressive IP and neural networks (NN). The cells offered by us have a low supply voltage of 1.8–3.3 V, low power consumption (microwatts), the conversion time is less than 1 μs, and consist of several dozen transistors. We also consider the cells for the implementation of various neuron activation functions in neural networks and transient nonlinear conversion with characteristics of S-, N-, and λ-types. In conclusion, we make estimates and show the prospects for such approaches to the design of sensor processors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Bozniak, Y. A. (2002). Recognition algorithms of multilevel images of multi-character identification objects based on nonlinear equivalent metrics and analysis of experimental data. Proceedings of SPIE, 4731, 154–163.CrossRef Krasilenko, V. G., Nikolskyy, A. I., & Bozniak, Y. A. (2002). Recognition algorithms of multilevel images of multi-character identification objects based on nonlinear equivalent metrics and analysis of experimental data. Proceedings of SPIE, 4731, 154–163.CrossRef
2.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Bozniak, Y. A. (2012). Recognition algorithms of images of multi-character identification objects based in nonlinear equivalent metrics and analysis of experimental data using designed software. In Proceedings of Eleventh All-Ukrainian International Conference (pp. 107–110). Krasilenko, V. G., Nikolskyy, A. I., & Bozniak, Y. A. (2012). Recognition algorithms of images of multi-character identification objects based in nonlinear equivalent metrics and analysis of experimental data using designed software. In Proceedings of Eleventh All-Ukrainian International Conference (pp. 107–110).
3.
go back to reference Krasilenko, V. G., Boznyak, Y. A., & Berozov, G. N. (2009). Modelling and comparative analysis of correlation and mutual alignment equivalent images. Science and learning process: Scientific and methodical. In Proceedings Scientific Conference of the VSEI Entrepreneurship University “Ukraine” (pp. 68–70). Krasilenko, V. G., Boznyak, Y. A., & Berozov, G. N. (2009). Modelling and comparative analysis of correlation and mutual alignment equivalent images. Science and learning process: Scientific and methodical. In Proceedings Scientific Conference of the VSEI Entrepreneurship University “Ukraine” (pp. 68–70).
4.
go back to reference Krasilenko, V. G., & Magas, A. T. (1997). Multiport optical associative memory based on matrix-matrix equivalentors. Proceedings of SPIE, 3055, 137–146.CrossRef Krasilenko, V. G., & Magas, A. T. (1997). Multiport optical associative memory based on matrix-matrix equivalentors. Proceedings of SPIE, 3055, 137–146.CrossRef
5.
go back to reference Krasilenko, V. G. (2010). Research and design of equivalence model of heteroassociative memory. The Scientific Session of MIFI-2010, 2, 83–90. Krasilenko, V. G. (2010). Research and design of equivalence model of heteroassociative memory. The Scientific Session of MIFI-2010, 2, 83–90.
6.
go back to reference Krasilenko, V. G., Saletsky, F. M., Yatskovsky, V. I., & Konate, K. (1998). Continuous logic equivalence models of Hamming neural network architectures with adaptive-correlated weighting. Proceedings of SPIE, 3402, 398–408.CrossRef Krasilenko, V. G., Saletsky, F. M., Yatskovsky, V. I., & Konate, K. (1998). Continuous logic equivalence models of Hamming neural network architectures with adaptive-correlated weighting. Proceedings of SPIE, 3402, 398–408.CrossRef
7.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Yatskovskaya, R. A., & Yatskovsky, V. I. (2011). The concept models and implementations of multiport neural net associative memory for 2D patterns. Proceedings of SPIE, 8055, 80550T.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Yatskovskaya, R. A., & Yatskovsky, V. I. (2011). The concept models and implementations of multiport neural net associative memory for 2D patterns. Proceedings of SPIE, 8055, 80550T.CrossRef
8.
go back to reference Krasilenko, V. G., Lazarev, A., & Grabovlyak, S. (2012). Design and simulation of a multiport neural network heteroassociative memory for optical pattern recognitions. Рrосeedings of SРІЕ, 8398, 83980N-1. Krasilenko, V. G., Lazarev, A., & Grabovlyak, S. (2012). Design and simulation of a multiport neural network heteroassociative memory for optical pattern recognitions. Рrосeedings of SРІЕ, 8398, 83980N-1.
9.
go back to reference Krasilenko, V. G., & Nikolskyy, A. I. (2001). Орtісаl раttеrn rесоgnіtіоn аlgоrіthms bаsеd оn nеurаl-lоgіс еquivаlеnt mоdеls аnd dеmоnstrаtіоn оf thеіr рrоspесts аnd роssіblе іmрlеmеntаtіоns. Рrосeedings оf SРІЕ, 4387, 247–260. Krasilenko, V. G., & Nikolskyy, A. I. (2001). Орtісаl раttеrn rесоgnіtіоn аlgоrіthms bаsеd оn nеurаl-lоgіс еquivаlеnt mоdеls аnd dеmоnstrаtіоn оf thеіr рrоspесts аnd роssіblе іmрlеmеntаtіоns. Рrосeedings оf SРІЕ, 4387, 247–260.
10.
go back to reference Krasilenko, V. G., Kolesnitsky, O. K., & Boguhvalsky, A. K. (1997). Application of non-linear correlation functions and equivalence models in advanced neuronets. Рrосeedings of SРІЕ, 3317, 211–223. Krasilenko, V. G., Kolesnitsky, O. K., & Boguhvalsky, A. K. (1997). Application of non-linear correlation functions and equivalence models in advanced neuronets. Рrосeedings of SРІЕ, 3317, 211–223.
11.
go back to reference Krasilenko, V. G., & Nikitovich, D. V. (2014). Experimental studies of spatially invariant equivalence models of associative and hetero-associative memory 2D images. Systemy obrobky informaciji Kharkivsjkyj universytet Povitrjanykh Syl imeni Ivana Kozheduba, 4(120), 113–120. Krasilenko, V. G., & Nikitovich, D. V. (2014). Experimental studies of spatially invariant equivalence models of associative and hetero-associative memory 2D images. Systemy obrobky informaciji Kharkivsjkyj universytet Povitrjanykh Syl imeni Ivana Kozheduba, 4(120), 113–120.
12.
go back to reference Krasilenko, V. G., Lazarev, A. A., Grabovlyak, S. K., & Nikitovich, D. V. (2013). Using a multi-port architecture of neural-net associative memory based on the equivalency paradigm for parallel cluster image analysis and self-learning. Proceedings of SPIE, 8662, 86620S.CrossRef Krasilenko, V. G., Lazarev, A. A., Grabovlyak, S. K., & Nikitovich, D. V. (2013). Using a multi-port architecture of neural-net associative memory based on the equivalency paradigm for parallel cluster image analysis and self-learning. Proceedings of SPIE, 8662, 86620S.CrossRef
13.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Flavitskaya, J. A. (2010). The structures of optical neural nets based on new matrix_tensor equivalently models (MTEMs) and results of modeling. Optical Memory and Neural Networks (Information Optics), 19(1), 31–38.CrossRef Krasilenko, V. G., Nikolskyy, A. I., & Flavitskaya, J. A. (2010). The structures of optical neural nets based on new matrix_tensor equivalently models (MTEMs) and results of modeling. Optical Memory and Neural Networks (Information Optics), 19(1), 31–38.CrossRef
14.
go back to reference Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2014). Experimental research of methods for clustering and selecting image fragments using spatial invariant equivalent models. Proceedings of SPIE, 9286, 928650.CrossRef Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2014). Experimental research of methods for clustering and selecting image fragments using spatial invariant equivalent models. Proceedings of SPIE, 9286, 928650.CrossRef
15.
go back to reference Krasilenko, V. G., & Nikitovich, D. V. (2015). Researching of clustering methods for selecting and grouping similar patches using two-dimensional nonlinear space-invariant models and functions of normalized equivalence. In VII Ukrainian-Polish Scientific and Practical Conference Electronics and Information Technologies (ELIT-2015) (pp. 129–134). Lviv: Ivan Franko National University of Lviv. Krasilenko, V. G., & Nikitovich, D. V. (2015). Researching of clustering methods for selecting and grouping similar patches using two-dimensional nonlinear space-invariant models and functions of normalized equivalence. In VII Ukrainian-Polish Scientific and Practical Conference Electronics and Information Technologies (ELIT-2015) (pp. 129–134). Lviv: Ivan Franko National University of Lviv.
16.
go back to reference Krasilenko, V. G., & Nikitovich, D. V. (2014). Modeling combined with self-learning clustering method of image fragments in accordance with their structural and topological features. Visnyk Khmeljnycjkogho Nacionaljnogho Universytetu, 2, 165–170. Krasilenko, V. G., & Nikitovich, D. V. (2014). Modeling combined with self-learning clustering method of image fragments in accordance with their structural and topological features. Visnyk Khmeljnycjkogho Nacionaljnogho Universytetu, 2, 165–170.
17.
go back to reference Krasilenko, V. G., & Nikitovich, D. V. (2014). Sumishhenyj z samonavchannjam metod klasteryzaciji fraghmentiv zobrazhenj za jikh strukturno-topologhichnymy oznakamy ta jogho modeljuvannja. In Pytannja prykladnoji matematyky i matematychnogho modeljuvannja (pp. 167–176). Krasilenko, V. G., & Nikitovich, D. V. (2014). Sumishhenyj z samonavchannjam metod klasteryzaciji fraghmentiv zobrazhenj za jikh strukturno-topologhichnymy oznakamy ta jogho modeljuvannja. In Pytannja prykladnoji matematyky i matematychnogho modeljuvannja (pp. 167–176).
18.
go back to reference LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge, MA: MIT Press. LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
20.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12) (pp. 1097–1105). New York: Curran Associates Inc. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12) (pp. 1097–1105). New York: Curran Associates Inc.
23.
go back to reference Taylor, G. W., Fergus, R., LeCun, Y., & Bregler, C. (2010). Convolutional learning of spatio-temporal features. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Proceedings of the 11th European Conference on Computer Vision: Part VI (ECCV’10) (pp. 140–153). Berlin: Springer. Taylor, G. W., Fergus, R., LeCun, Y., & Bregler, C. (2010). Convolutional learning of spatio-temporal features. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Proceedings of the 11th European Conference on Computer Vision: Part VI (ECCV’10) (pp. 140–153). Berlin: Springer.
25.
go back to reference Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2017). Modeling and possible implementation of self-learning equivalence-convolutional neural structures for auto-encoding-decoding and clusterization of images. Proceedings of SPIE, 10453, 104532N. Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2017). Modeling and possible implementation of self-learning equivalence-convolutional neural structures for auto-encoding-decoding and clusterization of images. Proceedings of SPIE, 10453, 104532N.
26.
go back to reference Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2018, 8 March). Modeling of biologically motivated self-learning equivalent-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for image fragments clustering and recognition. In Proc. SPIE 10609, MIPPR 2017: Pattern Recognition and Computer Vision, 106091D. https://doi.org/10.1117/12.2285797 Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2018, 8 March). Modeling of biologically motivated self-learning equivalent-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for image fragments clustering and recognition. In Proc. SPIE 10609, MIPPR 2017: Pattern Recognition and Computer Vision, 106091D. https://​doi.​org/​10.​1117/​12.​2285797
27.
go back to reference Fey, D. (2001). Architecture and technologies for an optoelectronic VLSI. Optic, 112(7), 274–282. Fey, D. (2001). Architecture and technologies for an optoelectronic VLSI. Optic, 112(7), 274–282.
30.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2013, January 3). Multichannel serial-parallel analog-to-digital converters based on current mirrors for multi-sensor systems. In Proc. SPIE Vol. 8550, Optical Systems Design 2012, 855022. https://doi.org/10.1117/12.2001703. Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2013, January 3). Multichannel serial-parallel analog-to-digital converters based on current mirrors for multi-sensor systems. In Proc. SPIE Vol. 8550, Optical Systems Design 2012, 855022. https://​doi.​org/​10.​1117/​12.​2001703.
31.
go back to reference Mori, M., & Yatagai, T. (1997). Optical learning neural networks with two dimensional structures. In Proceedings of SPIE (Vol. 3402, pp. 226–232). Mori, M., & Yatagai, T. (1997). Optical learning neural networks with two dimensional structures. In Proceedings of SPIE (Vol. 3402, pp. 226–232).
32.
go back to reference Krasilenko, V. G., Bogukhvalskiy, A. K., & Magas, A. T. (1996). Designing and simulation optoelectronic neural networks with help of equivalental models and multivalued logics. Proceedings of SPIE, 2824, 135–146.CrossRef Krasilenko, V. G., Bogukhvalskiy, A. K., & Magas, A. T. (1996). Designing and simulation optoelectronic neural networks with help of equivalental models and multivalued logics. Proceedings of SPIE, 2824, 135–146.CrossRef
33.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2011). [Design and simulation of time-pulse coded optoelectronic neural elements and devices, optoelectronic devices and properties]. InTech . ISBN: 978-953-307-204-3. https://doi.org/10.5772/16175. Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2011). [Design and simulation of time-pulse coded optoelectronic neural elements and devices, optoelectronic devices and properties]. InTech . ISBN: 978-953-307-204-3. https://​doi.​org/​10.​5772/​16175.
34.
go back to reference Krasilenko, V. G., Nikolskyy, A. I, & Lazarev, A. A. (2013). [Design and modeling of optoelectronic photocurrent reconfigurable (OPR) multifunctional logic devices (MFLD) as the universal circuitry basis for advanced parallel high- performance processing, optoelectronics—Advanced materials and devices]. InTech. ISBN: 978-953-51-0922-8. https://doi.org/10.5772/54540. Krasilenko, V. G., Nikolskyy, A. I, & Lazarev, A. A. (2013). [Design and modeling of optoelectronic photocurrent reconfigurable (OPR) multifunctional logic devices (MFLD) as the universal circuitry basis for advanced parallel high- performance processing, optoelectronics—Advanced materials and devices]. InTech. ISBN: 978-953-51-0922-8. https://​doi.​org/​10.​5772/​54540.
35.
go back to reference Krasilenko, V. G., Bardachenko, V. F., Nikolsky, A. I., & Lazarev, A. A. (2007). Programmed optoelectronic time-pulse coded relational processor as base element for sorting neural networks. In Proceedings of SPIE (Vol. 6576, p. 657610). Bellingham, WA: SPIE. Krasilenko, V. G., Bardachenko, V. F., Nikolsky, A. I., & Lazarev, A. A. (2007). Programmed optoelectronic time-pulse coded relational processor as base element for sorting neural networks. In Proceedings of SPIE (Vol. 6576, p. 657610). Bellingham, WA: SPIE.
36.
go back to reference Huang, K. S., Yenkins, B., & Sawchuk, A. (1989). Image algebra representation of parallel optical binary arithmetic. Applied Optics, 28(6), 1263–1278.CrossRef Huang, K. S., Yenkins, B., & Sawchuk, A. (1989). Image algebra representation of parallel optical binary arithmetic. Applied Optics, 28(6), 1263–1278.CrossRef
37.
go back to reference Wang, J., & Long, Y. (2017). M-ary optical computing. In Cloud computing-architecture and applications. InTech. Wang, J., & Long, Y. (2017). M-ary optical computing. In Cloud computing-architecture and applications. InTech.
38.
go back to reference Guilfoyle, P., & McCallum, D. (1996). High-speed low-energy digital optical processors. Optical Engineering, 35(2), 436–442.CrossRef Guilfoyle, P., & McCallum, D. (1996). High-speed low-energy digital optical processors. Optical Engineering, 35(2), 436–442.CrossRef
39.
go back to reference Pituach, H. (2003). Enlight256. White paper report. Israel: Lenslet Ltd. Pituach, H. (2003). Enlight256. White paper report. Israel: Lenslet Ltd.
40.
go back to reference Krasilenko, V. G., Bardachenko, V. F., Nikolsky, A. I., Lazarev, A. A., & Kolesnytsky, O. K. (2005). Design of optoelectronic scalar-relation vector processors with time-pulse coding. Proceedings of SPIE, 5813, 333–341.CrossRef Krasilenko, V. G., Bardachenko, V. F., Nikolsky, A. I., Lazarev, A. A., & Kolesnytsky, O. K. (2005). Design of optoelectronic scalar-relation vector processors with time-pulse coding. Proceedings of SPIE, 5813, 333–341.CrossRef
41.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Lazareva, M. V. (2010). Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks. Proceedings of SPIE, 7723, 77231G.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Lazareva, M. V. (2010). Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks. Proceedings of SPIE, 7723, 77231G.CrossRef
42.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2014). Simulation of reconfigurable multifunctional continuous logic devices as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection. Proceedings of SPIE, 9009, 90090R. Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2014). Simulation of reconfigurable multifunctional continuous logic devices as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection. Proceedings of SPIE, 9009, 90090R.
43.
go back to reference Kolesnitsky, O. K., & Krasilenko, V. G. (1992). Analog-to-digital converters with picture organization for digital optoelectronic processors. Autometric, 2, 16–29. Kolesnitsky, O. K., & Krasilenko, V. G. (1992). Analog-to-digital converters with picture organization for digital optoelectronic processors. Autometric, 2, 16–29.
44.
go back to reference Kozshemjako, V. P., Krasilenko, V. G., & Kolesnitsky, O. K. (1993). Converters of halftone images in binary slices for digital optoelectronic processors. Proceedings of SPIE, 1806, 654–658.CrossRef Kozshemjako, V. P., Krasilenko, V. G., & Kolesnitsky, O. K. (1993). Converters of halftone images in binary slices for digital optoelectronic processors. Proceedings of SPIE, 1806, 654–658.CrossRef
45.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Krasilenko, O. V., & Nikolska, M. A. (2011). Continuously logical complementary: Dual equivalently analog-to-digital converters for the optical systems. Proceedings of SPIE, 8001–8030. Krasilenko, V. G., Nikolskyy, A. I., Krasilenko, O. V., & Nikolska, M. A. (2011). Continuously logical complementary: Dual equivalently analog-to-digital converters for the optical systems. Proceedings of SPIE, 8001–8030.
46.
47.
go back to reference Salahuddin, N. S., Wibowo, E. P., Mutiara, A. B., & Paindavoine, M. (2011). Design of thin-film-transistor (TFT) arrays using current mirror circuits. In Livre/Conférence Journal of Engineering, Computing, Sciences & Technology, Asian Transactions (Vol. 1, pp. 55–59). Salahuddin, N. S., Wibowo, E. P., Mutiara, A. B., & Paindavoine, M. (2011). Design of thin-film-transistor (TFT) arrays using current mirror circuits. In Livre/Conférence Journal of Engineering, Computing, Sciences & Technology, Asian Transactions (Vol. 1, pp. 55–59).
49.
go back to reference Długosz, R., & Iniewski, K. (2007). Flexible architecture of ultra-low-power current-mode interleaved successive approximation analog-to-digital converter for wireless sensor networks. VLSI Design, 2007. Article ID 45269, 13 pages. Długosz, R., & Iniewski, K. (2007). Flexible architecture of ultra-low-power current-mode interleaved successive approximation analog-to-digital converter for wireless sensor networks. VLSI Design, 2007. Article ID 45269, 13 pages.
51.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., Krasilenko, O. V., & Krasilenko, I. A. (2013). Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems. Proceedings of SPIE, 8774, 877414.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., Krasilenko, O. V., & Krasilenko, I. A. (2013). Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems. Proceedings of SPIE, 8774, 877414.CrossRef
52.
go back to reference Rath, A., Mandal, S. K., Das, S., & Dash, S. P. (2014). A high speed CMOS current comparator in 90 nm CMOS process technology. International Journal of Computer Applications. (0975–8887) International Conference on Microelectronics, Circuits and Systems (MICRO-2014). Rath, A., Mandal, S. K., Das, S., & Dash, S. P. (2014). A high speed CMOS current comparator in 90 nm CMOS process technology. International Journal of Computer Applications. (0975–8887) International Conference on Microelectronics, Circuits and Systems (MICRO-2014).
53.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Parashuk, A. V. (2001). Research of dynamic processes in neural networks with help of system energy equivalence functions. In Proceedings of the 8-th STC Measuring and Computer Devices in Technological Processes №8 (pp. 325–330). Krasilenko, V. G., Nikolskyy, A. I., & Parashuk, A. V. (2001). Research of dynamic processes in neural networks with help of system energy equivalence functions. In Proceedings of the 8-th STC Measuring and Computer Devices in Technological Processes №8 (pp. 325–330).
54.
go back to reference Perju, V., & Casasent, D. (2012). Optical multichannel correlators for high-speed targets detection and localization. Proceedings of SPIE, 8398, 83980C.CrossRef Perju, V., & Casasent, D. (2012). Optical multichannel correlators for high-speed targets detection and localization. Proceedings of SPIE, 8398, 83980C.CrossRef
55.
go back to reference Rudenko, O. G., & Bodiansky, E. V. (2005). Artificial neural networks. Kharkov: OOO SMIT Company. 408p. Rudenko, O. G., & Bodiansky, E. V. (2005). Artificial neural networks. Kharkov: OOO SMIT Company. 408p.
56.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Pavlov, S. N. (2002). The associative 2D-memories based on matrix-tensor equivalental models. Radioelektronika Informatics Communication, 2(8), 45–54. Krasilenko, V. G., Nikolskyy, A. I., & Pavlov, S. N. (2002). The associative 2D-memories based on matrix-tensor equivalental models. Radioelektronika Informatics Communication, 2(8), 45–54.
57.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Lоbоdzinskа, R. F. (2009). Dеsіgn оf neurophysiologically motivated structures оf tіme-рulsе соdеd nеurоns. Рrосeedings of SРІЕ, 7343. Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Lоbоdzinskа, R. F. (2009). Dеsіgn оf neurophysiologically motivated structures оf tіme-рulsе соdеd nеurоns. Рrосeedings of SРІЕ, 7343.
58.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Magas, T. E. (2010). Design and simulation of optoelectronic complementary dual neural elements for realizing a family of normalized vector ‘equivalence-nonequivalence’ operations. Proceedings of SPIE, 7703, 77030P.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Magas, T. E. (2010). Design and simulation of optoelectronic complementary dual neural elements for realizing a family of normalized vector ‘equivalence-nonequivalence’ operations. Proceedings of SPIE, 7703, 77030P.CrossRef
59.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Sholohov, V. I. (2004). The concept of biologically motivated time-pulse information processing for design and construction of multifunctional devices of neural logic. Proceedings of SPIE, 5421, 183–194.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Sholohov, V. I. (2004). The concept of biologically motivated time-pulse information processing for design and construction of multifunctional devices of neural logic. Proceedings of SPIE, 5421, 183–194.CrossRef
60.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Magas, T. E. (2012). Simulation results of optoelectronic photocurrent reconfigurable (OPR) universal logic devices (ULD) as the universal circuitry basis for advanced parallel high-performance processing. Proceedings of SPIE, 8559, 85590K.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Magas, T. E. (2012). Simulation results of optoelectronic photocurrent reconfigurable (OPR) universal logic devices (ULD) as the universal circuitry basis for advanced parallel high-performance processing. Proceedings of SPIE, 8559, 85590K.CrossRef
61.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Mihalnichenko, N. N. (2004). Smart time-pulse coding photo-converters as basic components 2D-array logic devices for advanced neural networks and optical computers. Proceedings of SPIE, 5439. Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Mihalnichenko, N. N. (2004). Smart time-pulse coding photo-converters as basic components 2D-array logic devices for advanced neural networks and optical computers. Proceedings of SPIE, 5439.
62.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2015). Designing and simulation smart multifunctional continuous logic device as a basic cell of advanced high-performance sensor systems with MIMO-structure. Proceedings of SPIE, 9450, 94500N.CrossRef Krasilenko, V. G., Nikolskyy, A. I., & Lazarev, A. A. (2015). Designing and simulation smart multifunctional continuous logic device as a basic cell of advanced high-performance sensor systems with MIMO-structure. Proceedings of SPIE, 9450, 94500N.CrossRef
63.
go back to reference Krasilenko, V. G., Ogorodnik, K. V., Nikolskyy, A. I., & Dubchak, V. N. (2011). Family of optoelectronic photocurrent reconfigurable universal (or multifunctional) logical elements (OPR ULE) on the basis of continuous logic operations (CLO) and current mirrors (CM). Proceedings of SPIE, 8001, 80012Q.CrossRef Krasilenko, V. G., Ogorodnik, K. V., Nikolskyy, A. I., & Dubchak, V. N. (2011). Family of optoelectronic photocurrent reconfigurable universal (or multifunctional) logical elements (OPR ULE) on the basis of continuous logic operations (CLO) and current mirrors (CM). Proceedings of SPIE, 8001, 80012Q.CrossRef
64.
go back to reference Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Pavlov, S. N. (2005). Design and applications of a family of optoelectronic photocurrent logical elements on the basis of current mirrors and comparators. Proceedings of SPIE, 5948, 59481G.CrossRef Krasilenko, V. G., Nikolskyy, A. I., Lazarev, A. A., & Pavlov, S. N. (2005). Design and applications of a family of optoelectronic photocurrent logical elements on the basis of current mirrors and comparators. Proceedings of SPIE, 5948, 59481G.CrossRef
65.
go back to reference Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2018). Design and simulation of optoelectronic neuron equivalentors as hardware accelerators of self-learning equivalent convolutional neural structures (SLECNS). Proceedings of SPIE, 10689, 106890C. Krasilenko, V. G., Lazarev, A. A., & Nikitovich, D. V. (2018). Design and simulation of optoelectronic neuron equivalentors as hardware accelerators of self-learning equivalent convolutional neural structures (SLECNS). Proceedings of SPIE, 10689, 106890C.
66.
go back to reference Rodríguez-Quiñonez, J. C., Sergiyenko, O., Hernandez-Balbuena, D., Rivas-Lopez, M., Flores-Fuentes, W., & Basaca-Preciado, L. C. (2014). Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function. Opto-Electronics Review, 22(4), 224–235.CrossRef Rodríguez-Quiñonez, J. C., Sergiyenko, O., Hernandez-Balbuena, D., Rivas-Lopez, M., Flores-Fuentes, W., & Basaca-Preciado, L. C. (2014). Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function. Opto-Electronics Review, 22(4), 224–235.CrossRef
67.
go back to reference Flores-Fuentes, W., Sergiyenko, O., Gonzalez-Navarro, F. F., Rivas-López, M., Rodríguez-Quiñonez, J. C., Hernández-Balbuena, D., et al. (2016). Multivariate outlier mining and regression feedback for 3D measurement improvement in opto-mechanical system. Optical and Quantum Electronics, 48(8), 403.CrossRef Flores-Fuentes, W., Sergiyenko, O., Gonzalez-Navarro, F. F., Rivas-López, M., Rodríguez-Quiñonez, J. C., Hernández-Balbuena, D., et al. (2016). Multivariate outlier mining and regression feedback for 3D measurement improvement in opto-mechanical system. Optical and Quantum Electronics, 48(8), 403.CrossRef
68.
go back to reference Flores-Fuentes, W., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Rivas-Lopez, M., Sergiyenko, O., Gonzalez-Navarro, F. F., & Rivera-Castillo, J. (2014, June). Machine vision supported by artificial intelligence. In Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on (pp. 1949–1954). IEEE. Flores-Fuentes, W., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Rivas-Lopez, M., Sergiyenko, O., Gonzalez-Navarro, F. F., & Rivera-Castillo, J. (2014, June). Machine vision supported by artificial intelligence. In Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on (pp. 1949–1954). IEEE.
Metadata
Title
Design and Simulation of Array Cells of Mixed Sensor Processors for Intensity Transformation and Analog-Digital Coding in Machine Vision
Authors
Vladimir G. Krasilenko
Alexander A. Lazarev
Diana V. Nikitovich
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22587-2_4