Skip to main content
Top
Published in: Journal of Polymer Research 3/2018

01-03-2018 | REVIEW PAPER

Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review

Authors: Dina S. Ahmed, Gamal A. El-Hiti, Emad Yousif, Ali A. Ali, Ayad S. Hameed

Published in: Journal of Polymer Research | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The design and synthesis of porous organic materials that have increasing physical and chemical characteristics have been discussed. For example, a variety of porous organic polymers, metal–organic frameworks, conjugated microporous polymers, and polymers of intrinsic microporosity have been designed and synthesized using simple and efficient procedures. Such materials have unique gas adsorption properties and can be used in gases separation and storage. In addition, they have high surface area, porosity, and selectivity towards carbon dioxide compared to other gases such as nitrogen and methane.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abas N, Khan N (2014) Carbon conundrum, climate change, CO2 capture and consumptions. J CO2 Util 8:39–48CrossRef Abas N, Khan N (2014) Carbon conundrum, climate change, CO2 capture and consumptions. J CO2 Util 8:39–48CrossRef
2.
go back to reference Zhang F, Xu L, Chen J, Chen X, Niu Z, Lei T, Li C, Zhao J (2013) Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 11(3):264–272CrossRef Zhang F, Xu L, Chen J, Chen X, Niu Z, Lei T, Li C, Zhao J (2013) Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 11(3):264–272CrossRef
3.
go back to reference Diapouli E, Chaloulakou A, Spyrellis N (2007) Levels of ultrafine particles in different microenvironments–implications to children exposure. Sci Total Environ 388(1–3):128–136CrossRef Diapouli E, Chaloulakou A, Spyrellis N (2007) Levels of ultrafine particles in different microenvironments–implications to children exposure. Sci Total Environ 388(1–3):128–136CrossRef
4.
go back to reference Xiao G, Wang X, Zhang J, Ni M, Gao X, Luo Z, Cen K (2013) Granular bed filter: a promising technology for hot gas clean-up. Powder Technol 244:93–99CrossRef Xiao G, Wang X, Zhang J, Ni M, Gao X, Luo Z, Cen K (2013) Granular bed filter: a promising technology for hot gas clean-up. Powder Technol 244:93–99CrossRef
5.
6.
go back to reference Dunn S (2001) Hydrogen futures: toward a sustainable energy system. International Energy Agency, Paris Dunn S (2001) Hydrogen futures: toward a sustainable energy system. International Energy Agency, Paris
7.
go back to reference Riahi K, Roehr RA, Schrattenholzer L, Miketa A (2001) Technology clusters in sustainable development scenarios. Progress Report of Environmental Issue Groups. International Forum of the Collaboration Projects in Spring, Tokyo Riahi K, Roehr RA, Schrattenholzer L, Miketa A (2001) Technology clusters in sustainable development scenarios. Progress Report of Environmental Issue Groups. International Forum of the Collaboration Projects in Spring, Tokyo
8.
go back to reference van den Berg AWC, Berg VD, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681CrossRef van den Berg AWC, Berg VD, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681CrossRef
9.
go back to reference Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, De Weireld G, Vimont A, Daturi M, Chang J-S (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550–562CrossRef Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, De Weireld G, Vimont A, Daturi M, Chang J-S (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550–562CrossRef
10.
go back to reference Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4(10):3805–3819CrossRef Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4(10):3805–3819CrossRef
11.
go back to reference Mastalerz M, Schneider MW, Oppel IM, Presly O (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Ed 50(5):1046–1051CrossRef Mastalerz M, Schneider MW, Oppel IM, Presly O (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Ed 50(5):1046–1051CrossRef
12.
go back to reference D'Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRef D'Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRef
13.
go back to reference Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981CrossRef Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981CrossRef
14.
go back to reference Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4(1):42–55CrossRef Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4(1):42–55CrossRef
15.
go back to reference Keller II GE (1983) In: Whyte Jr TE, Yon CM, Wagener EH (eds) Industrial gas separations, ACS symposium series, vol 223. American Chemical Society, Washington, DC Keller II GE (1983) In: Whyte Jr TE, Yon CM, Wagener EH (eds) Industrial gas separations, ACS symposium series, vol 223. American Chemical Society, Washington, DC
16.
go back to reference Auer A, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173(2):259–271CrossRef Auer A, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173(2):259–271CrossRef
17.
go back to reference Ruthven DMS, Farouw S, Knaebel KS (1994) Pressure swing adsorption. Wiley, New York Ruthven DMS, Farouw S, Knaebel KS (1994) Pressure swing adsorption. Wiley, New York
18.
go back to reference Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York
19.
go back to reference Humphrey JL, Keller II GE (1997) Separation process technology. McGraw-Hill, New York Humphrey JL, Keller II GE (1997) Separation process technology. McGraw-Hill, New York
20.
21.
go back to reference Sircar S (2002) Pressure swing adsorption. Ind Eng Chem Res 41(6):1389–1392CrossRef Sircar S (2002) Pressure swing adsorption. Ind Eng Chem Res 41(6):1389–1392CrossRef
22.
go back to reference Sircar S, Golden TC (2000) Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 35(5):667–687CrossRef Sircar S, Golden TC (2000) Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 35(5):667–687CrossRef
23.
go back to reference Knaebel KS, Ruthven DM, Humphrey JL, Carr R (1999) In: Radecki PP, Crittenden JC, Shonnard DR, Bulloch JL (eds) Emerging separation and separative reaction technologies for process waste reduction: adsorption and membrane systems. AIChE Center for Waste Reduction Technologies, New York Knaebel KS, Ruthven DM, Humphrey JL, Carr R (1999) In: Radecki PP, Crittenden JC, Shonnard DR, Bulloch JL (eds) Emerging separation and separative reaction technologies for process waste reduction: adsorption and membrane systems. AIChE Center for Waste Reduction Technologies, New York
24.
go back to reference Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. Cambridge University Press, New York Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. Cambridge University Press, New York
25.
go back to reference Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity2nd edn. Academic Press, London Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity2nd edn. Academic Press, London
26.
go back to reference Roquerol F, Roquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications1st edn. Academic Press, London Roquerol F, Roquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications1st edn. Academic Press, London
27.
go back to reference Kuhl GH (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites: fundamentals and applications. New York, Springer Kuhl GH (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites: fundamentals and applications. New York, Springer
28.
go back to reference Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2):145–149CrossRef Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2):145–149CrossRef
29.
go back to reference Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45(2):293–303CrossRef Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45(2):293–303CrossRef
30.
go back to reference Kaneko K (1996) In: Dabrowski A, Tertykh VA (eds) Adsorption on new and modified inorganic sorbents, Studies in surface and catalysis, vol 99. 1st edn. Amsterdam, Elsevier Kaneko K (1996) In: Dabrowski A, Tertykh VA (eds) Adsorption on new and modified inorganic sorbents, Studies in surface and catalysis, vol 99. 1st edn. Amsterdam, Elsevier
31.
go back to reference Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241CrossRef Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241CrossRef
32.
go back to reference Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef
33.
go back to reference Seifert J, Emig G (1987) Mikrostrukturuntersuchungen an porösen Feststoffen durch Physisorptionsmessungen. Chem Ing Tech 59(6):475–484CrossRef Seifert J, Emig G (1987) Mikrostrukturuntersuchungen an porösen Feststoffen durch Physisorptionsmessungen. Chem Ing Tech 59(6):475–484CrossRef
34.
go back to reference Weder C (2008) Hole control in microporous polymers. Angew Chem Int Ed 47(3):448–450CrossRef Weder C (2008) Hole control in microporous polymers. Angew Chem Int Ed 47(3):448–450CrossRef
35.
go back to reference Antonietti M, Ozin GA (2004) Promises and problems of mesoscale materials chemistry or why meso? Chem Eur J 10(1):28–41CrossRef Antonietti M, Ozin GA (2004) Promises and problems of mesoscale materials chemistry or why meso? Chem Eur J 10(1):28–41CrossRef
36.
go back to reference McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11(9):2610–2620CrossRef McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11(9):2610–2620CrossRef
37.
go back to reference Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100(4):1605–1644CrossRef Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100(4):1605–1644CrossRef
38.
go back to reference Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254–258CrossRef Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254–258CrossRef
39.
go back to reference Germain J, Fréchet JMJ, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5(10):1098–1111CrossRef Germain J, Fréchet JMJ, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5(10):1098–1111CrossRef
40.
go back to reference Klontzas E, Tylianakis E, Froudakis GE (2008) Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation. J Phys Chem C 112(24):9095–9098CrossRef Klontzas E, Tylianakis E, Froudakis GE (2008) Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation. J Phys Chem C 112(24):9095–9098CrossRef
41.
go back to reference Tylianakis E, Klontzas E, Froudakis GE (2009) The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Nanotechnology 20(20):204030CrossRef Tylianakis E, Klontzas E, Froudakis GE (2009) The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Nanotechnology 20(20):204030CrossRef
42.
go back to reference Germain J, Svec F, Fréchet JMJ (2008) Preparation of size-selective nanoporous polymer networks of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater 20(22):7069–7076CrossRef Germain J, Svec F, Fréchet JMJ (2008) Preparation of size-selective nanoporous polymer networks of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater 20(22):7069–7076CrossRef
44.
go back to reference Kuhn P, Forget A, Su D, Thomas A, Antonietti M (2008) From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J Am Chem Soc 130(40):13333–13337CrossRef Kuhn P, Forget A, Su D, Thomas A, Antonietti M (2008) From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J Am Chem Soc 130(40):13333–13337CrossRef
45.
go back to reference Tilford RW, Mugavero 3rd SJ, Pellechia PJ, Lavigne JJ (2008) Tailoring microporosity in covalent organic frameworks. Adv Mater 20(14):2741–2746CrossRef Tilford RW, Mugavero 3rd SJ, Pellechia PJ, Lavigne JJ (2008) Tailoring microporosity in covalent organic frameworks. Adv Mater 20(14):2741–2746CrossRef
46.
go back to reference Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41(8):2880–2885CrossRef Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41(8):2880–2885CrossRef
47.
go back to reference Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous conjugated poly(thienylene arylene) networks. Adv Mater 21(6):702–705CrossRef Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous conjugated poly(thienylene arylene) networks. Adv Mater 21(6):702–705CrossRef
48.
go back to reference Thomas A, Kuhn P, Weber J, Titirici M-M, Antonietti M (2009) Porous polymers: enabling solutions for energy applications. Macromol Rapid Commun 30(4–5):221–236CrossRef Thomas A, Kuhn P, Weber J, Titirici M-M, Antonietti M (2009) Porous polymers: enabling solutions for energy applications. Macromol Rapid Commun 30(4–5):221–236CrossRef
49.
go back to reference Jiang J-X, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130(24):7710–7720CrossRef Jiang J-X, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130(24):7710–7720CrossRef
50.
go back to reference Weber J, Su Q, Antonietti M, Thomas A (2007) Exploring polymers of intrinsic microporosity – microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28:1871–1876CrossRef Weber J, Su Q, Antonietti M, Thomas A (2007) Exploring polymers of intrinsic microporosity – microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28:1871–1876CrossRef
51.
go back to reference Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80(1):61–164CrossRef Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80(1):61–164CrossRef
52.
go back to reference Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2008) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781CrossRef Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2008) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781CrossRef
53.
go back to reference Chang Z, Zhang D-S, Chen Q, Bu X-H (2013) Microporous organic polymers for gas storage and separation applications. Phys Chem Chem Phys 15:5430–5442CrossRef Chang Z, Zhang D-S, Chen Q, Bu X-H (2013) Microporous organic polymers for gas storage and separation applications. Phys Chem Chem Phys 15:5430–5442CrossRef
54.
go back to reference Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34(6):471–484CrossRef Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34(6):471–484CrossRef
55.
go back to reference Enthaler S (2008) Carbon dioxide–the hydrogen-storage material of the future? ChemSusChem 1(10):801–804CrossRef Enthaler S (2008) Carbon dioxide–the hydrogen-storage material of the future? ChemSusChem 1(10):801–804CrossRef
56.
go back to reference Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRef Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRef
57.
go back to reference Zhang C, Yang X, Zhao Y, Wang X, Yu M, Jiang J-X (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41CrossRef Zhang C, Yang X, Zhao Y, Wang X, Yu M, Jiang J-X (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41CrossRef
58.
go back to reference Leaf D, Verolmec HJH, Hunt Jr WF (2003) Overview of regulatory/policy/economic issues related to carbon dioxide. Environ Int 29(2–3):303–310CrossRef Leaf D, Verolmec HJH, Hunt Jr WF (2003) Overview of regulatory/policy/economic issues related to carbon dioxide. Environ Int 29(2–3):303–310CrossRef
59.
go back to reference Ciferno JP, Litynski JL, Plasynski SI (2010) DOE/NETL carbon dioxide capture and storage RD&D roadmap. National Energy Technology Laboratory, Pittsburgh Ciferno JP, Litynski JL, Plasynski SI (2010) DOE/NETL carbon dioxide capture and storage RD&D roadmap. National Energy Technology Laboratory, Pittsburgh
60.
go back to reference Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion-carbon dioxide capture: an opportunity for membranes. J Membr Sci 359(1–2):126–139CrossRef Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion-carbon dioxide capture: an opportunity for membranes. J Membr Sci 359(1–2):126–139CrossRef
61.
go back to reference Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD (2008) Advances in CO2 capture technology–the U.S. department of energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20CrossRef Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD (2008) Advances in CO2 capture technology–the U.S. department of energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20CrossRef
62.
go back to reference Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245CrossRef Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245CrossRef
63.
go back to reference Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) Synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRef Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) Synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRef
64.
go back to reference Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674CrossRef Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674CrossRef
65.
go back to reference Barrie J, Brown K, Hatcher PR, Schellhase HU (2004) Carbon dioxide pipelines: a preliminary review of design and risks. Greenhouse Gas Control Technol 1:315–320 Barrie J, Brown K, Hatcher PR, Schellhase HU (2004) Carbon dioxide pipelines: a preliminary review of design and risks. Greenhouse Gas Control Technol 1:315–320
66.
go back to reference Halmann MM, Steinberg M (1998) Greenhouse gas carbon dioxide mitigation: science and technology. CRC Press, New York Halmann MM, Steinberg M (1998) Greenhouse gas carbon dioxide mitigation: science and technology. CRC Press, New York
67.
go back to reference Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727CrossRef Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727CrossRef
68.
go back to reference Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99CrossRef Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99CrossRef
69.
go back to reference Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann P, Savolainen J, Schlömer S, von Stechow C, Zwickel T (2014) Climate change 2014: mitigation of climate change. working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann P, Savolainen J, Schlömer S, von Stechow C, Zwickel T (2014) Climate change 2014: mitigation of climate change. working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York
70.
go back to reference Wallquist L, Seigo SL, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRef Wallquist L, Seigo SL, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRef
71.
go back to reference Rubin ES (2005) IPCC special report on carbon dioxide capture and storage. US Climate Change Science Program Workshop, Washington, DC Rubin ES (2005) IPCC special report on carbon dioxide capture and storage. US Climate Change Science Program Workshop, Washington, DC
72.
go back to reference Thomas A (2010) Functional materials: from hard to soft porous frameworks. Angew Chem Int Ed 49(45):8328–8344CrossRef Thomas A (2010) Functional materials: from hard to soft porous frameworks. Angew Chem Int Ed 49(45):8328–8344CrossRef
73.
go back to reference Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424–428CrossRef Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424–428CrossRef
74.
go back to reference Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943CrossRef Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943CrossRef
75.
go back to reference Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas–a review. Prog Polym Sci 34(6):561–580CrossRef Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas–a review. Prog Polym Sci 34(6):561–580CrossRef
76.
go back to reference Lau CH, Li P, Li F, Chung T-S, Paul DR (2013) Reverse-selective polymeric membranes for gas separations. Prog Polym Sci 38(5):740–766CrossRef Lau CH, Li P, Li F, Chung T-S, Paul DR (2013) Reverse-selective polymeric membranes for gas separations. Prog Polym Sci 38(5):740–766CrossRef
77.
go back to reference Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26(6):853–893CrossRef Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26(6):853–893CrossRef
78.
go back to reference Baker RW (2009) In: Drioli E, Giorno L (eds) Membrane operations: innovative separations and transformations. Wiley-VCH, Weinheim, pp 167–194CrossRef Baker RW (2009) In: Drioli E, Giorno L (eds) Membrane operations: innovative separations and transformations. Wiley-VCH, Weinheim, pp 167–194CrossRef
79.
go back to reference Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654CrossRef Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654CrossRef
80.
go back to reference Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24(8):1511–1517CrossRef Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24(8):1511–1517CrossRef
81.
go back to reference Kaliva M, Armatas GS, Vamvakaki M (2012) Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 28(5):2690–2695CrossRef Kaliva M, Armatas GS, Vamvakaki M (2012) Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 28(5):2690–2695CrossRef
82.
go back to reference D’Alessandro DM, McDonald T (2011) Toward carbon dioxide capture using nanoporous materials. Pure Appl Chem 83(1):57–66CrossRef D’Alessandro DM, McDonald T (2011) Toward carbon dioxide capture using nanoporous materials. Pure Appl Chem 83(1):57–66CrossRef
83.
go back to reference Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155(3):553–566CrossRef Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155(3):553–566CrossRef
84.
go back to reference Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRef Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRef
85.
go back to reference Dawson R, Cooper AI, Adams DJ (2013) Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym Int 62(3):345–352CrossRef Dawson R, Cooper AI, Adams DJ (2013) Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym Int 62(3):345–352CrossRef
86.
go back to reference Jiang J-X, Cooper AI (2009) Microporous organic polymers: design, synthesis, and function. In: Schröder M (ed) Functional metal-organic frameworks: gas storage, separation and catalysis. Top Curr Chem vol 293. Springer, Berlin Jiang J-X, Cooper AI (2009) Microporous organic polymers: design, synthesis, and function. In: Schröder M (ed) Functional metal-organic frameworks: gas storage, separation and catalysis. Top Curr Chem vol 293. Springer, Berlin
87.
go back to reference Zhu X-L, Wang P-Y, Peng C, Yang J, Yan X-B (2014) Activated carbon produced from paulownia sawdust for high performance CO2 sorbents. Chin Chem Lett 25(6):929–932CrossRef Zhu X-L, Wang P-Y, Peng C, Yang J, Yan X-B (2014) Activated carbon produced from paulownia sawdust for high performance CO2 sorbents. Chin Chem Lett 25(6):929–932CrossRef
88.
go back to reference Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3(9):1136–1141CrossRef Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3(9):1136–1141CrossRef
89.
go back to reference Holst JR, Cooper AI (2010) Ultrahigh surface area in porous solids. Adv Mater 22(45):5212–5216CrossRef Holst JR, Cooper AI (2010) Ultrahigh surface area in porous solids. Adv Mater 22(45):5212–5216CrossRef
90.
go back to reference Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR (2010) BCN: a graphene analogue with remarkable adsorptive properties. Chem Eur J 16(1):149–157CrossRef Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR (2010) BCN: a graphene analogue with remarkable adsorptive properties. Chem Eur J 16(1):149–157CrossRef
91.
go back to reference Wright PA (2008) Microporous framework solids. Royal Society of Chemistry, Cambridge Wright PA (2008) Microporous framework solids. Royal Society of Chemistry, Cambridge
92.
go back to reference Zhu Z, Li A, Zhong S, Liu F, Zhang Q (2008) Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure. J Appl Polym Sci 109(3):1692–1698CrossRef Zhu Z, Li A, Zhong S, Liu F, Zhang Q (2008) Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure. J Appl Polym Sci 109(3):1692–1698CrossRef
93.
go back to reference Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRef Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRef
94.
go back to reference Besson M, Gallezot P, Perrard A, Pinel C (2005) Active carbons as catalysts for liquid phase reactions. Catal Today 102:160–165CrossRef Besson M, Gallezot P, Perrard A, Pinel C (2005) Active carbons as catalysts for liquid phase reactions. Catal Today 102:160–165CrossRef
95.
go back to reference Xu H, Rudkevich DM (2004) CO2 in supramolecular chemistry: preparation of switchable supramolecular polymers. Chem Eur J 10(21):5432–5442CrossRef Xu H, Rudkevich DM (2004) CO2 in supramolecular chemistry: preparation of switchable supramolecular polymers. Chem Eur J 10(21):5432–5442CrossRef
96.
go back to reference Liebl MR, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25(6):970–980CrossRef Liebl MR, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25(6):970–980CrossRef
97.
go back to reference Li G, Wang Z (2013) Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules 46(8):3058–3066CrossRef Li G, Wang Z (2013) Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules 46(8):3058–3066CrossRef
98.
go back to reference Wilmer CE, Farha OK, Bae Y-S, Hupp JT, Snurr RQ (2012) Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci 5(12):9849–9856CrossRef Wilmer CE, Farha OK, Bae Y-S, Hupp JT, Snurr RQ (2012) Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci 5(12):9849–9856CrossRef
99.
go back to reference Wang Z, Yuan S, Mason A, Reprogle B, Liu D-J, Yu LP (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45(18):7413–7419CrossRef Wang Z, Yuan S, Mason A, Reprogle B, Liu D-J, Yu LP (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45(18):7413–7419CrossRef
100.
go back to reference Liu L, Wang X, Zhang Q, Li Q, Zhao Y (2013) Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue. CrystEngComm 15(5):841–844CrossRef Liu L, Wang X, Zhang Q, Li Q, Zhao Y (2013) Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue. CrystEngComm 15(5):841–844CrossRef
101.
go back to reference McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683CrossRef McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683CrossRef
102.
go back to reference Zhang Y, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao F-S (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4(2):135–142CrossRef Zhang Y, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao F-S (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4(2):135–142CrossRef
103.
go back to reference İslamoğlu T, Rabbani MG, El-Kaderi HM (2013) Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. J Mater Chem A 1(35):10259–10266CrossRef İslamoğlu T, Rabbani MG, El-Kaderi HM (2013) Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. J Mater Chem A 1(35):10259–10266CrossRef
104.
go back to reference El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O'Keeffe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316(5822):268–272CrossRef El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O'Keeffe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316(5822):268–272CrossRef
105.
go back to reference Liu L, Zhang J (2013) Triptycene-based microporous polymer with pending tetrazole moieties for CO2-capture application. Macromol Rapid Commun 34(23–24):1833–1837CrossRef Liu L, Zhang J (2013) Triptycene-based microporous polymer with pending tetrazole moieties for CO2-capture application. Macromol Rapid Commun 34(23–24):1833–1837CrossRef
106.
go back to reference Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D-J (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46(25):4547–4549CrossRef Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D-J (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46(25):4547–4549CrossRef
107.
go back to reference Konstas K, Taylor JW, Thornton AW, Doherty CM, Lim WX, Bastow TJ, Kennedy DF, Wood CD, Cox BJ, Hill JM, Hill AJ, Hill MR (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed 51(27):6639–6642CrossRef Konstas K, Taylor JW, Thornton AW, Doherty CM, Lim WX, Bastow TJ, Kennedy DF, Wood CD, Cox BJ, Hill JM, Hill AJ, Hill MR (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed 51(27):6639–6642CrossRef
108.
go back to reference Liu L, Li P-Z, Zhu L, Zou R, Zhao Y (2013) Microporous polymelamine network for highly selective CO2 adsorption. Polymer 54(2):596–600CrossRef Liu L, Li P-Z, Zhu L, Zou R, Zhao Y (2013) Microporous polymelamine network for highly selective CO2 adsorption. Polymer 54(2):596–600CrossRef
109.
go back to reference Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25(9):1630–1635CrossRef Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25(9):1630–1635CrossRef
110.
go back to reference Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170CrossRef Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170CrossRef
111.
go back to reference Tilford RW, Gemmill WR, Zur Loye H-C, Lavigne JJ (2006) Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem Mater 18(22):5296–5301CrossRef Tilford RW, Gemmill WR, Zur Loye H-C, Lavigne JJ (2006) Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem Mater 18(22):5296–5301CrossRef
112.
go back to reference Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 129(43):12914–12915CrossRef Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 129(43):12914–12915CrossRef
113.
go back to reference Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130(36):11872–11873CrossRef Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130(36):11872–11873CrossRef
114.
go back to reference Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453CrossRef Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453CrossRef
115.
go back to reference Zwaneveld NAA, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L (2008) Organized formation of 2D extended covalent organic frameworks at surfaces. J Am Chem Soc 130(21):6678–6679CrossRef Zwaneveld NAA, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L (2008) Organized formation of 2D extended covalent organic frameworks at surfaces. J Am Chem Soc 130(21):6678–6679CrossRef
116.
go back to reference Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2(8):672–677CrossRef Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2(8):672–677CrossRef
117.
go back to reference Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21(2):204–206CrossRef Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21(2):204–206CrossRef
118.
go back to reference Weston MH, Farha OK, Hauser BG, Hupp JT, Nguyen ST (2012) Synthesis and metalation of catechol-functionalized porous organic polymers. Chem Mater 24(7):1292–1296CrossRef Weston MH, Farha OK, Hauser BG, Hupp JT, Nguyen ST (2012) Synthesis and metalation of catechol-functionalized porous organic polymers. Chem Mater 24(7):1292–1296CrossRef
119.
go back to reference Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112(7):3959–4015CrossRef Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112(7):3959–4015CrossRef
120.
go back to reference Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765–1771CrossRef Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765–1771CrossRef
121.
go back to reference Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883CrossRef Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883CrossRef
122.
go back to reference Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23(7):1650–1653CrossRef Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23(7):1650–1653CrossRef
123.
go back to reference Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan C-G, Han B-H (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087CrossRef Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan C-G, Han B-H (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087CrossRef
124.
go back to reference Zhao Y-C, Cheng Q-Y, Zhou D, Wang T, Han B-H (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22(23):11509–11514CrossRef Zhao Y-C, Cheng Q-Y, Zhou D, Wang T, Han B-H (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22(23):11509–11514CrossRef
125.
go back to reference Zhao Y, Yao KX, Teng B, Zhang T, Han Y (2013) A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy Environ Sci 6(12):3684–3692CrossRef Zhao Y, Yao KX, Teng B, Zhang T, Han Y (2013) A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy Environ Sci 6(12):3684–3692CrossRef
126.
go back to reference Chen Q, Liu D-P, Zhu J-H, Han B-H (2014) Mesoporous conjugated polycarbazole with high porosity via structure tuning. Macromolecules 47(17):5926–5931CrossRef Chen Q, Liu D-P, Zhu J-H, Han B-H (2014) Mesoporous conjugated polycarbazole with high porosity via structure tuning. Macromolecules 47(17):5926–5931CrossRef
127.
go back to reference Jin Y, Voss BA, Jin A, Long H, Noble RD, Zhang W (2011) Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J Am Chem Soc 133(17):6650–6658CrossRef Jin Y, Voss BA, Jin A, Long H, Noble RD, Zhang W (2011) Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J Am Chem Soc 133(17):6650–6658CrossRef
128.
go back to reference Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48(8):1141–1143CrossRef Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48(8):1141–1143CrossRef
129.
go back to reference Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133(49):19816–19822CrossRef Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133(49):19816–19822CrossRef
130.
go back to reference Zhang K, Kopetzki D, Seeberger PH, Antonietti M, Vilela F (2013) Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew Chem Int Ed 52(5):1432–1436CrossRef Zhang K, Kopetzki D, Seeberger PH, Antonietti M, Vilela F (2013) Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew Chem Int Ed 52(5):1432–1436CrossRef
131.
go back to reference Han SS, Mendoza-Cortés JL, Goddard WAIII (2009) Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRef Han SS, Mendoza-Cortés JL, Goddard WAIII (2009) Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRef
132.
go back to reference Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112(2):869–932CrossRef Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112(2):869–932CrossRef
133.
go back to reference Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24(22):3026–3031CrossRef Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24(22):3026–3031CrossRef
134.
go back to reference Xiang Z, Cao D (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33(14):1184–1190CrossRef Xiang Z, Cao D (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33(14):1184–1190CrossRef
135.
go back to reference Filer A, Choi H-J, Seo J-M, Baek J-B (2014) Two and three dimensional network polymers for electrocatalysis. Phys Chem Chem Phys 16(23):11150–11161CrossRef Filer A, Choi H-J, Seo J-M, Baek J-B (2014) Two and three dimensional network polymers for electrocatalysis. Phys Chem Chem Phys 16(23):11150–11161CrossRef
136.
go back to reference Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41(6):2083–2094CrossRef Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41(6):2083–2094CrossRef
137.
go back to reference McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43(12):5163–5176CrossRef McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43(12):5163–5176CrossRef
138.
go back to reference Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng X, Müllen K (2009) Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J Am Chem Soc 131(21):7216–7217CrossRef Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng X, Müllen K (2009) Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J Am Chem Soc 131(21):7216–7217CrossRef
139.
go back to reference Jin Y, Voss BA, McCaffrey R, Baggett CT, Noble RD, Zhang W (2012) Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs). Chem Sci 3(3):874–877CrossRef Jin Y, Voss BA, McCaffrey R, Baggett CT, Noble RD, Zhang W (2012) Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs). Chem Sci 3(3):874–877CrossRef
140.
go back to reference Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24(42):5703–5707CrossRef Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24(42):5703–5707CrossRef
141.
go back to reference Lu W, Yuan D, Sculle J, Zhao D, Krishna R, Zhou H-C (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133(45):18126–18129CrossRef Lu W, Yuan D, Sculle J, Zhao D, Krishna R, Zhou H-C (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133(45):18126–18129CrossRef
142.
go back to reference Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969CrossRef Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969CrossRef
143.
go back to reference Zacher D, Shekhah O, WÖll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38(5):1418–1429CrossRef Zacher D, Shekhah O, WÖll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38(5):1418–1429CrossRef
144.
go back to reference Kandambeth S, Mallich A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527CrossRef Kandambeth S, Mallich A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527CrossRef
145.
go back to reference Uribe-Romo FJ, Doonan CJ, Furukawa H, Sosaki K, Yaghi OM (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133(30):11478–11481CrossRef Uribe-Romo FJ, Doonan CJ, Furukawa H, Sosaki K, Yaghi OM (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133(30):11478–11481CrossRef
146.
go back to reference Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131(44):16000–16001CrossRef Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131(44):16000–16001CrossRef
147.
go back to reference Alkordi MH, Haikal RR, Hassan YS, Emwas A-H, Belmabkhout Y (2015) Poly-functional porous-organic polymers to access functionality – CO2 sorption energetic relationships. J Mater Chem A 3(45):22584–22590CrossRef Alkordi MH, Haikal RR, Hassan YS, Emwas A-H, Belmabkhout Y (2015) Poly-functional porous-organic polymers to access functionality – CO2 sorption energetic relationships. J Mater Chem A 3(45):22584–22590CrossRef
148.
go back to reference Arab P, Rabbani MG, Sekizkardes AK, İslamoğlu T, El-Kaderi HM (2014) Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 26(3):1385–1392CrossRef Arab P, Rabbani MG, Sekizkardes AK, İslamoğlu T, El-Kaderi HM (2014) Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 26(3):1385–1392CrossRef
149.
go back to reference Li G, Liu Q, Xia B, Huang J, Li S, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polym J 91:242–247CrossRef Li G, Liu Q, Xia B, Huang J, Li S, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polym J 91:242–247CrossRef
150.
go back to reference Cui P, Jing X-F, Yuan Y, Zhu G-S (2016) Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO2 separation. Chin Chem Lett 27(9):1479–1484CrossRef Cui P, Jing X-F, Yuan Y, Zhu G-S (2016) Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO2 separation. Chin Chem Lett 27(9):1479–1484CrossRef
151.
go back to reference D'Alelio GF, Crivello JV, Dehner TR, Schoenig RK (1967) Polymeric Schiff bases. VII. Some parameters in the evaluation of the thermal stability of poly(p-xylylidene-p-phenylenediamine). J Macromol Sci A Chem 1(7):1331–1364CrossRef D'Alelio GF, Crivello JV, Dehner TR, Schoenig RK (1967) Polymeric Schiff bases. VII. Some parameters in the evaluation of the thermal stability of poly(p-xylylidene-p-phenylenediamine). J Macromol Sci A Chem 1(7):1331–1364CrossRef
152.
go back to reference D'Alelio GF, Crivello JV, Schoenig RK, Huemmer JF (1967) Polymeric Schiff bases. VI. The direct syntheses of poly-Schiff bases. J Macromol Sci A Chem 1(7):1321–1330CrossRef D'Alelio GF, Crivello JV, Schoenig RK, Huemmer JF (1967) Polymeric Schiff bases. VI. The direct syntheses of poly-Schiff bases. J Macromol Sci A Chem 1(7):1321–1330CrossRef
154.
go back to reference Gupta VK, Agarwal S, Jakob A, Lang H (2006) A zinc-selective electrode based on N,N'-bis(acetylacetone)ethylenediimine. Sens Actuators B 114(2):812–818CrossRef Gupta VK, Agarwal S, Jakob A, Lang H (2006) A zinc-selective electrode based on N,N'-bis(acetylacetone)ethylenediimine. Sens Actuators B 114(2):812–818CrossRef
155.
go back to reference Thomas O, Inganäs O, Andersson MR (1998) Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 31(8):2676–2678CrossRef Thomas O, Inganäs O, Andersson MR (1998) Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 31(8):2676–2678CrossRef
156.
go back to reference Delman AD, Stein AA, Simms BB (1967) Synthesis and thermal stability of structurally related aromatic Schiff bases and acid amides. J Macromol Sci A Chem 1(1):147–178CrossRef Delman AD, Stein AA, Simms BB (1967) Synthesis and thermal stability of structurally related aromatic Schiff bases and acid amides. J Macromol Sci A Chem 1(1):147–178CrossRef
157.
go back to reference Nishat N, Hasnain S, Manisha A (2012) Synthetic, spectroscopic, magnetic, thermal, and antimicrobial approach towards new biocidal coordination polymers. J Appl Polym Sci 124(5):3971–3979CrossRef Nishat N, Hasnain S, Manisha A (2012) Synthetic, spectroscopic, magnetic, thermal, and antimicrobial approach towards new biocidal coordination polymers. J Appl Polym Sci 124(5):3971–3979CrossRef
158.
go back to reference Atta AM, Shaker NO, Maysour NE (2006) Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog Org Coat 56(2–3):100–110CrossRef Atta AM, Shaker NO, Maysour NE (2006) Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog Org Coat 56(2–3):100–110CrossRef
159.
go back to reference Kaya I, Vilayetoğlu AR, Topak H (2002) Synthesis of oligo-ortho-azomethinephenol and its oligomer-metal complexes: characterization and application as anti-microbial agents. J Appl Polym Sci 85(9):2004–2013CrossRef Kaya I, Vilayetoğlu AR, Topak H (2002) Synthesis of oligo-ortho-azomethinephenol and its oligomer-metal complexes: characterization and application as anti-microbial agents. J Appl Polym Sci 85(9):2004–2013CrossRef
160.
go back to reference Kaya I, Demir HÖ, Vilayetoğlu AR (2002) The synthesis and characterisation of planar oligophenol with Schiff base substitute. Synth Met 126(2–3):183–191CrossRef Kaya I, Demir HÖ, Vilayetoğlu AR (2002) The synthesis and characterisation of planar oligophenol with Schiff base substitute. Synth Met 126(2–3):183–191CrossRef
161.
go back to reference Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Diversity 13(2):71–193CrossRef Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Diversity 13(2):71–193CrossRef
162.
go back to reference Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374CrossRef Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374CrossRef
163.
go back to reference Yang G, Han H, Du C, Luo Z, Wang Y (2010) Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions. Polymer 51(26):6193–6202CrossRef Yang G, Han H, Du C, Luo Z, Wang Y (2010) Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions. Polymer 51(26):6193–6202CrossRef
164.
go back to reference Manoranjan N, Won DH, Kim J, Woo SI (2016) Amide linked conjugated porous polymers for effective CO2 capture and separation. J CO2 Util 16:486–491CrossRef Manoranjan N, Won DH, Kim J, Woo SI (2016) Amide linked conjugated porous polymers for effective CO2 capture and separation. J CO2 Util 16:486–491CrossRef
165.
go back to reference Zhang J, Hao D, Lu H, Leng W, Gui J, Gao Y (2014) Facile fabrication of a novel microporous Schiff-base networks polymer membrane on surface modified porous α-Al2O3 support. Mater Lett 126:259–262CrossRef Zhang J, Hao D, Lu H, Leng W, Gui J, Gao Y (2014) Facile fabrication of a novel microporous Schiff-base networks polymer membrane on surface modified porous α-Al2O3 support. Mater Lett 126:259–262CrossRef
166.
go back to reference Ahmed DS, El-Hiti GA, Yousif E, Hameed AS, Abdalla M (2017) New eco-friendly phosphorus organic polymers as gas storage media. Polymers 9(8):336CrossRef Ahmed DS, El-Hiti GA, Yousif E, Hameed AS, Abdalla M (2017) New eco-friendly phosphorus organic polymers as gas storage media. Polymers 9(8):336CrossRef
167.
go back to reference Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779CrossRef Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779CrossRef
168.
go back to reference Svec F, Fréchet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205–211CrossRef Svec F, Fréchet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205–211CrossRef
169.
go back to reference Kimmins SD, Cameron NR (2011) Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater 21(2):211–225CrossRef Kimmins SD, Cameron NR (2011) Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater 21(2):211–225CrossRef
170.
go back to reference Nischang I, Causon TJ (2016) Porous polymer monoliths: from their fundamental structure to analytical engineering applications. TrAC-Trends Anal Chem 75:108–117CrossRef Nischang I, Causon TJ (2016) Porous polymer monoliths: from their fundamental structure to analytical engineering applications. TrAC-Trends Anal Chem 75:108–117CrossRef
171.
go back to reference Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55(1):304–320CrossRef Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55(1):304–320CrossRef
172.
go back to reference Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R (2006) Covalent enzyme immobilization on to photopolymerized highly porous monoliths. Adv Mater 18(14):1822–1826CrossRef Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R (2006) Covalent enzyme immobilization on to photopolymerized highly porous monoliths. Adv Mater 18(14):1822–1826CrossRef
173.
go back to reference Xie Y, Wang T-T, Liu X-H, Zou K, Deng W-Q (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960CrossRef Xie Y, Wang T-T, Liu X-H, Zou K, Deng W-Q (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960CrossRef
174.
go back to reference Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37(4):530–563CrossRef Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37(4):530–563CrossRef
175.
go back to reference Xiang Z, Cao D (2013) Porous covalent-organic materials: synthesis, clean energy application and design. J Mater Chem A 1(8):2691–2718CrossRef Xiang Z, Cao D (2013) Porous covalent-organic materials: synthesis, clean energy application and design. J Mater Chem A 1(8):2691–2718CrossRef
176.
go back to reference Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112(2):782–835CrossRef Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112(2):782–835CrossRef
177.
go back to reference Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15(20):1977–1986CrossRef Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15(20):1977–1986CrossRef
178.
go back to reference Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 121(50):9621–9624CrossRef Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 121(50):9621–9624CrossRef
179.
go back to reference Jiang J-X, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI (2011) Metal–organic conjugated microporous polymers. Angew Chem Int Ed 50(5):1072–1075CrossRef Jiang J-X, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI (2011) Metal–organic conjugated microporous polymers. Angew Chem Int Ed 50(5):1072–1075CrossRef
180.
go back to reference Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132(26):9138–9143CrossRef Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132(26):9138–9143CrossRef
181.
go back to reference Zhang P, Weng Z, Guo J, Wang C (2011) Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki–Miyaura coupling reaction. Chem Mater 23(23):5243–5249CrossRef Zhang P, Weng Z, Guo J, Wang C (2011) Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki–Miyaura coupling reaction. Chem Mater 23(23):5243–5249CrossRef
182.
go back to reference Li B, Guan Z, Wang W, Yang X, Hu J, Tan B, Li T (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki–Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24(25):3390–3395CrossRef Li B, Guan Z, Wang W, Yang X, Hu J, Tan B, Li T (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki–Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24(25):3390–3395CrossRef
183.
go back to reference Xie Z, Wang C, deKrafft KE, Lin W (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc 133(7):2056–2059CrossRef Xie Z, Wang C, deKrafft KE, Lin W (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc 133(7):2056–2059CrossRef
184.
go back to reference Chan-Thaw CE, Villa A, Katekomol P, Su D, Thomas A, Prati L (2010) Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett 10(2):537–541CrossRef Chan-Thaw CE, Villa A, Katekomol P, Su D, Thomas A, Prati L (2010) Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett 10(2):537–541CrossRef
185.
go back to reference Hasell T, Wood CD, Clowes R, Jones JTA, Khimyak YZ, Adams DJ, Cooper AI (2010) Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem Mater 22(2):557–564CrossRef Hasell T, Wood CD, Clowes R, Jones JTA, Khimyak YZ, Adams DJ, Cooper AI (2010) Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem Mater 22(2):557–564CrossRef
186.
go back to reference Yang Y, Ogasawara S, Li G, Kato S (2013) Water compatible Pd nanoparticle catalysts supported on microporous polymers: their controllable microstructure and extremely low Pd-leaching behavior. J Mater Chem A 1(11):3700–3705CrossRef Yang Y, Ogasawara S, Li G, Kato S (2013) Water compatible Pd nanoparticle catalysts supported on microporous polymers: their controllable microstructure and extremely low Pd-leaching behavior. J Mater Chem A 1(11):3700–3705CrossRef
187.
go back to reference Lu Y-M, Zhu H-Z, Li W-G, Hu B, Yu S-H (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1(11):3783–3788CrossRef Lu Y-M, Zhu H-Z, Li W-G, Hu B, Yu S-H (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1(11):3783–3788CrossRef
188.
go back to reference Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with –OH functional groups and high CO2 capture capacity. Chem Mater 23(7):1818–1824CrossRef Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with –OH functional groups and high CO2 capture capacity. Chem Mater 23(7):1818–1824CrossRef
189.
go back to reference Katsoulidis AP, He J, Kanatzidis MG (2012) Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chem Mater 24(10):1937–1943CrossRef Katsoulidis AP, He J, Kanatzidis MG (2012) Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chem Mater 24(10):1937–1943CrossRef
190.
go back to reference Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRef Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRef
191.
go back to reference Qian H, He Q, Zheng J, Li S, Zhang S (2014) Catechol-functionalized microporous organic polymer as supported media for Pd nanoparticles and its high catalytic activity. Polymer 55(2):550–555CrossRef Qian H, He Q, Zheng J, Li S, Zhang S (2014) Catechol-functionalized microporous organic polymer as supported media for Pd nanoparticles and its high catalytic activity. Polymer 55(2):550–555CrossRef
192.
go back to reference Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048CrossRef Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048CrossRef
193.
go back to reference Rose M, Böhlmann W, Sabo M, Kaskel S (2008) Element–organic frameworks with high permanent porosity. Chem Commun 44(21):2462–2464CrossRef Rose M, Böhlmann W, Sabo M, Kaskel S (2008) Element–organic frameworks with high permanent porosity. Chem Commun 44(21):2462–2464CrossRef
194.
go back to reference Weber J, Thomas A (2008) Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130(20):6334–6335CrossRef Weber J, Thomas A (2008) Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130(20):6334–6335CrossRef
195.
go back to reference Hao L, Zhang S, Liu R, Ning J, Zhang G, Zhi L (2015) Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 27(20):3190–3195CrossRef Hao L, Zhang S, Liu R, Ning J, Zhang G, Zhi L (2015) Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 27(20):3190–3195CrossRef
196.
go back to reference Zhu X, Tian C, Mahurin SM, Chai S-H, Wang C, Brown S, Veith GM, Luo H, Liu H, Dai S (2012) A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 134(25):10478–10484CrossRef Zhu X, Tian C, Mahurin SM, Chai S-H, Wang C, Brown S, Veith GM, Luo H, Liu H, Dai S (2012) A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 134(25):10478–10484CrossRef
197.
go back to reference Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022CrossRef Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022CrossRef
198.
go back to reference Kiskan B, Antonietti M, Weber J (2012) Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 45(3):1356–1361CrossRef Kiskan B, Antonietti M, Weber J (2012) Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 45(3):1356–1361CrossRef
199.
go back to reference Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444CrossRef Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444CrossRef
200.
go back to reference Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674CrossRef Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674CrossRef
201.
go back to reference Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc Chem Res 34(4):319–330CrossRef Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc Chem Res 34(4):319–330CrossRef
202.
go back to reference Tranchemontagne DJ, Mendoza-Cortés JL, O'Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38(5):1257–1283CrossRef Tranchemontagne DJ, Mendoza-Cortés JL, O'Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38(5):1257–1283CrossRef
203.
go back to reference Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRef Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRef
204.
go back to reference Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRef Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRef
205.
go back to reference Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRef Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRef
206.
go back to reference Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352CrossRef Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352CrossRef
207.
go back to reference Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef
208.
go back to reference Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRef Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRef
209.
go back to reference O'Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38(5):1215–1217CrossRef O'Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38(5):1215–1217CrossRef
210.
go back to reference Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRef Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRef
211.
go back to reference Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keefe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keefe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef
212.
go back to reference Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed 44(30):4670–4679CrossRef Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed 44(30):4670–4679CrossRef
213.
go back to reference Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17(30):3154–3160CrossRef Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17(30):3154–3160CrossRef
214.
go back to reference Murray LJ, Dincã M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRef Murray LJ, Dincã M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRef
215.
go back to reference Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378(6558):703–706CrossRef Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378(6558):703–706CrossRef
216.
go back to reference Chen B, Xiang S, Qian G (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43(8):1115–1124CrossRef Chen B, Xiang S, Qian G (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43(8):1115–1124CrossRef
217.
go back to reference Wang C, Zhang T, Lin W (2012) Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev 112(2):1084–1104CrossRef Wang C, Zhang T, Lin W (2012) Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev 112(2):1084–1104CrossRef
218.
go back to reference Zhu C, Yuan G, Chen X, Yang Z, Cui Y (2012) Chiral nanoporous metal–metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J Am Chem Soc 134(19):8058–8061CrossRef Zhu C, Yuan G, Chen X, Yang Z, Cui Y (2012) Chiral nanoporous metal–metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J Am Chem Soc 134(19):8058–8061CrossRef
219.
go back to reference Gao WY, Chrzanowski M, Ma S (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43(16):5841–5866CrossRef Gao WY, Chrzanowski M, Ma S (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43(16):5841–5866CrossRef
220.
go back to reference Zhao D, Timmons DJ, Yuan D, Zhou H-C (2011) Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc Chem Res 44(2):123–133CrossRef Zhao D, Timmons DJ, Yuan D, Zhou H-C (2011) Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc Chem Res 44(2):123–133CrossRef
221.
go back to reference Lv X-L, Tong M, Hong H, Wang B, Gan L, Yang Q, Zhong C, Li JR (2015) A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake. J Solid State Chem 223:104–108CrossRef Lv X-L, Tong M, Hong H, Wang B, Gan L, Yang Q, Zhong C, Li JR (2015) A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake. J Solid State Chem 223:104–108CrossRef
222.
go back to reference Fu Z, Huang J (2017) Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib 438:1–9CrossRef Fu Z, Huang J (2017) Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib 438:1–9CrossRef
223.
go back to reference Ding L, Gao H, Xie F, Li W, Bai H, Li L (2017) Porosity-enhanced polymers from hyper-cross-linked polymer precursors. Macromolecules 50(3):956–962CrossRef Ding L, Gao H, Xie F, Li W, Bai H, Li L (2017) Porosity-enhanced polymers from hyper-cross-linked polymer precursors. Macromolecules 50(3):956–962CrossRef
224.
go back to reference Davankov V, Tsyurupa M (2010) Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications, vol 56. 1st edn. Elsevier, Amsterdam Davankov V, Tsyurupa M (2010) Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications, vol 56. 1st edn. Elsevier, Amsterdam
225.
go back to reference Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414CrossRef Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414CrossRef
226.
go back to reference Jing X, Zou D, Cui P, Ren H, Zhu G (2013) Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. J Mater Chem A 1(44):13926–13931CrossRef Jing X, Zou D, Cui P, Ren H, Zhu G (2013) Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. J Mater Chem A 1(44):13926–13931CrossRef
227.
go back to reference Yao S, Yang X, Yu M, Zhang Y, Jiang J-X (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2(21):8054–8059CrossRef Yao S, Yang X, Yu M, Zhang Y, Jiang J-X (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2(21):8054–8059CrossRef
228.
go back to reference Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134(26):10741–10744CrossRef Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134(26):10741–10744CrossRef
229.
go back to reference Zhu X, Mahurin SM, An S-H, Do-Thanh C-L, Tian C, Li Y, Gill LC, Hagaman EW, Bian Z, Zhou J-H, Hu J, Liu H, Dai S (2014) Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem Commun 50(59):7933–7936CrossRef Zhu X, Mahurin SM, An S-H, Do-Thanh C-L, Tian C, Li Y, Gill LC, Hagaman EW, Bian Z, Zhou J-H, Hu J, Liu H, Dai S (2014) Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem Commun 50(59):7933–7936CrossRef
230.
go back to reference Zhang Y, Li Y, Wang F, Zhao Y, Zhang C, Wang X, Jiang J-X (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55(22):5746–5750CrossRef Zhang Y, Li Y, Wang F, Zhao Y, Zhang C, Wang X, Jiang J-X (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55(22):5746–5750CrossRef
231.
go back to reference Fu Z, Jia J, Li J, Liu C (2017) Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem Eng J 323:557–564CrossRef Fu Z, Jia J, Li J, Liu C (2017) Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem Eng J 323:557–564CrossRef
232.
go back to reference Liu G, Wang Y, Shen C, Ju Z, Yuan D (2015) A facile synthesis of microporous organic polymers for efficient gas storage and separation. J Mater Chem A 3(6):3051–3058CrossRef Liu G, Wang Y, Shen C, Ju Z, Yuan D (2015) A facile synthesis of microporous organic polymers for efficient gas storage and separation. J Mater Chem A 3(6):3051–3058CrossRef
233.
go back to reference Uribe-Romo FJ, Hunt JR, Furukawa H, KlÖck C, O'Keeffe M, Yaghi OM (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131(13):4570–4571CrossRef Uribe-Romo FJ, Hunt JR, Furukawa H, KlÖck C, O'Keeffe M, Yaghi OM (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131(13):4570–4571CrossRef
234.
go back to reference McKeown NB (2012) Polymers of intrinsic microporosity. ISRN Mater Sci 2012:513986CrossRef McKeown NB (2012) Polymers of intrinsic microporosity. ISRN Mater Sci 2012:513986CrossRef
235.
go back to reference Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–2):1–49CrossRef Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–2):1–49CrossRef
236.
go back to reference MacLean DL, Bollinger WA, King DE, Narayan RS (1986) In: Li NN, Calo JM (eds) Recent developments in separation science. Boca Raton, CRC Press MacLean DL, Bollinger WA, King DE, Narayan RS (1986) In: Li NN, Calo JM (eds) Recent developments in separation science. Boca Raton, CRC Press
237.
go back to reference Henis JMS (1994) In: Paul DR, Yampolśkii YP (eds) Polymeric gas separation membranes. Boca Raton, CRC Press Henis JMS (1994) In: Paul DR, Yampolśkii YP (eds) Polymeric gas separation membranes. Boca Raton, CRC Press
238.
go back to reference Backhouse I (1991) In: Turner M (ed) Effective industrial membrane processes: benefits and opportunities. Springer, Amsterdam, pp 383–389CrossRef Backhouse I (1991) In: Turner M (ed) Effective industrial membrane processes: benefits and opportunities. Springer, Amsterdam, pp 383–389CrossRef
239.
go back to reference Sanders E, Clark DO, Jensvold JA, Beck HN, Lipscomb GG, Coan FL (1988) Process for preparing POWADIR membranes from tetrahalobisphenol A polycarbonate. US Patent 4,772,392 Sanders E, Clark DO, Jensvold JA, Beck HN, Lipscomb GG, Coan FL (1988) Process for preparing POWADIR membranes from tetrahalobisphenol A polycarbonate. US Patent 4,772,392
240.
go back to reference Baker RW (2002) Future directions on membrane gas separation technology. Ind Eng Chem Res 41(6):1393–1411CrossRef Baker RW (2002) Future directions on membrane gas separation technology. Ind Eng Chem Res 41(6):1393–1411CrossRef
241.
go back to reference Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121CrossRef Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121CrossRef
242.
go back to reference Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105(25):7473–7474CrossRef Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105(25):7473–7474CrossRef
243.
go back to reference Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun (2):230–231. https://doi.org/10.1039/B311764B Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun (2):230–231. https://​doi.​org/​10.​1039/​B311764B
244.
go back to reference Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031CrossRef Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031CrossRef
245.
go back to reference Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578CrossRef Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578CrossRef
246.
go back to reference Qiao S, Huang W, Du Z, Chen X, Shieh F-K, Yang R (2015) Phosphine oxide-based conjugated microporous polymers with excellent CO2 capture properties. New J Chem 39(1):136–141CrossRef Qiao S, Huang W, Du Z, Chen X, Shieh F-K, Yang R (2015) Phosphine oxide-based conjugated microporous polymers with excellent CO2 capture properties. New J Chem 39(1):136–141CrossRef
247.
go back to reference Dawson R, Laybourn A, Clowes R, Khimyak YZ, Adams DJ, Cooper AI (2009) Functionalized conjugated microporous polymers. Macromolecules 42(22):8809–8816CrossRef Dawson R, Laybourn A, Clowes R, Khimyak YZ, Adams DJ, Cooper AI (2009) Functionalized conjugated microporous polymers. Macromolecules 42(22):8809–8816CrossRef
248.
go back to reference Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16(50):4467–4470CrossRef Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16(50):4467–4470CrossRef
249.
go back to reference Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2(6):1173–1177CrossRef Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2(6):1173–1177CrossRef
250.
go back to reference Tan D, Xiong W, Sun H, Zhang Z, Ma W, Meng C, Fan W, Li A (2013) Conjugated microporous polymer with film and nanotube-like morphologies. Microporous Mesoporous Mater 176:25–30CrossRef Tan D, Xiong W, Sun H, Zhang Z, Ma W, Meng C, Fan W, Li A (2013) Conjugated microporous polymer with film and nanotube-like morphologies. Microporous Mesoporous Mater 176:25–30CrossRef
251.
go back to reference Zang J, Zhu Z, Sun H, Liang W, Li A (2016) Synthesis of functional conjugated microporous polymers containing pyridine units with high BET surface area for reversible CO2 storage. React Funct Polym 99:95–99CrossRef Zang J, Zhu Z, Sun H, Liang W, Li A (2016) Synthesis of functional conjugated microporous polymers containing pyridine units with high BET surface area for reversible CO2 storage. React Funct Polym 99:95–99CrossRef
Metadata
Title
Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review
Authors
Dina S. Ahmed
Gamal A. El-Hiti
Emad Yousif
Ali A. Ali
Ayad S. Hameed
Publication date
01-03-2018
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 3/2018
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1474-x

Other articles of this Issue 3/2018

Journal of Polymer Research 3/2018 Go to the issue

Premium Partners