Skip to main content
Top
Published in: Microsystem Technologies 3/2023

15-03-2023 | Technical Paper

Design and test of a linear micro-motion stage with adjustable stiffness and frequency

Authors: Ruiqi Li, Zhijun Yang, Bingyu Cai

Published in: Microsystem Technologies | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Various amplification mechanisms have been developed to extend the travel range of compliant mechanisms. For the serial design of these mechanisms and the neglection of the deflection of the link lever, the modeling errors are accumulated and contribute to a large deviation in the design performance. A stiffness-adjustable micro-motion is proposed in this work to offset the gaps between the design values and actual performance by utilizing the nonlinearity of corner-fillet leaf spring (CFLS). Simplified stiffness formulas of the right circular flexure hinge (RCFH) and fixed-guided CFLS are provided for easy design. The accurate model is built for the calculation of the amplification ratio by taking the deflection of the link lever and adjustment mechanism into account. The adjustment performance of the proposed mechanism is modeled by utilizing the nonlinear deflection. The design models are verified using finite element analysis (FEA) which presents a good agreement. Experimental investigations are carried out to illustrate the adjustment performance of the proposed micro-motion stage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chen G, Wang J, Liu X (2014) Generalized equations for estimating stress concentration factors of various notch flexure hinges. J Mech Des 136(3):031009CrossRef Chen G, Wang J, Liu X (2014) Generalized equations for estimating stress concentration factors of various notch flexure hinges. J Mech Des 136(3):031009CrossRef
go back to reference Chen G, Ma Y, Li J (2016) A tensural displacement amplifier employing elliptic-arc flexure hinges. Sens Actuators a: Phys 247:307–315CrossRef Chen G, Ma Y, Li J (2016) A tensural displacement amplifier employing elliptic-arc flexure hinges. Sens Actuators a: Phys 247:307–315CrossRef
go back to reference Chen F, Dong W, Yang M, Sun L, Du Z (2019) A PZT Actuated 6-DOF positioning system for space optics alignment. IEEE/ASME Trans Mechatron 24:2827–2838CrossRef Chen F, Dong W, Yang M, Sun L, Du Z (2019) A PZT Actuated 6-DOF positioning system for space optics alignment. IEEE/ASME Trans Mechatron 24:2827–2838CrossRef
go back to reference Dong W et al (2018) Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precis Eng 54:171–181CrossRef Dong W et al (2018) Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precis Eng 54:171–181CrossRef
go back to reference Hoxhold B, Buettgenbach S (2010) Easily manageable, electrothermally actuated silicon micro gripper. Microsyst Technol 16:1609–1617CrossRef Hoxhold B, Buettgenbach S (2010) Easily manageable, electrothermally actuated silicon micro gripper. Microsyst Technol 16:1609–1617CrossRef
go back to reference Kelly SG (2012) Mechanical vibrations: theory and applications, SI. Cengage Learning, Stamford Kelly SG (2012) Mechanical vibrations: theory and applications, SI. Cengage Learning, Stamford
go back to reference Li J, Yan P, Li J (2019) Displacement amplification ratio modeling of bridge-type nano-positioners with input displacement loss. Mech Sci 10:299–307CrossRef Li J, Yan P, Li J (2019) Displacement amplification ratio modeling of bridge-type nano-positioners with input displacement loss. Mech Sci 10:299–307CrossRef
go back to reference Li R, Yang Z, Chen G, Wu B (2021) Analytical solutions for nonlinear deflections of corner-fillet leaf-springs. Mech Mach Theory 157:104182CrossRef Li R, Yang Z, Chen G, Wu B (2021) Analytical solutions for nonlinear deflections of corner-fillet leaf-springs. Mech Mach Theory 157:104182CrossRef
go back to reference Lin C, Shen Z, Wu Z, Yu J (2018) Kinematic characteristic analysis of a micro-/nano positioning stage based on bridge-type amplifier. Sens Actuators a: Phys 271:230–242CrossRef Lin C, Shen Z, Wu Z, Yu J (2018) Kinematic characteristic analysis of a micro-/nano positioning stage based on bridge-type amplifier. Sens Actuators a: Phys 271:230–242CrossRef
go back to reference Ling M, Cao J, Jiang Z, Zeng M, Li Q (2019) Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model. Mech Syst Sig Process 115:120–131CrossRef Ling M, Cao J, Jiang Z, Zeng M, Li Q (2019) Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model. Mech Syst Sig Process 115:120–131CrossRef
go back to reference Liu P, Yan P (2016) A new model analysis approach for bridge-type amplifiers supporting nano-stage design. Mech Mach Theory 99:176–188CrossRef Liu P, Yan P (2016) A new model analysis approach for bridge-type amplifiers supporting nano-stage design. Mech Mach Theory 99:176–188CrossRef
go back to reference Liu P-B, Yan P, Zhang Z, Leng T-T (2015) Flexure-hinges guided nano-stage for precision manipulations: design, modeling and control. Int J Precis Eng Manuf 16:2245–2254CrossRef Liu P-B, Yan P, Zhang Z, Leng T-T (2015) Flexure-hinges guided nano-stage for precision manipulations: design, modeling and control. Int J Precis Eng Manuf 16:2245–2254CrossRef
go back to reference Qin Y-D, Zhao X, Shirinzadeh B, Tian Y-L, Zhang D-W (2018) Closed-form modeling and analysis of an xy flexure-based nano-manipulator. Chin J Mech Eng 31(1):1–11CrossRef Qin Y-D, Zhao X, Shirinzadeh B, Tian Y-L, Zhang D-W (2018) Closed-form modeling and analysis of an xy flexure-based nano-manipulator. Chin J Mech Eng 31(1):1–11CrossRef
go back to reference Qu J, Chen W, Zhang J, Chen W (2016) A large-range compliant micropositioning stage with remote-center-of-motion characteristic for parallel alignment. Microsyst Technol 22:777–789CrossRef Qu J, Chen W, Zhang J, Chen W (2016) A large-range compliant micropositioning stage with remote-center-of-motion characteristic for parallel alignment. Microsyst Technol 22:777–789CrossRef
go back to reference Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J, Mikczinski M (2015) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21:931–942CrossRef Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J, Mikczinski M (2015) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21:931–942CrossRef
go back to reference Thanh-Phong D, Huang S-C (2017) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol 23:441–456CrossRef Thanh-Phong D, Huang S-C (2017) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol 23:441–456CrossRef
go back to reference Thanh-Phong D et al (2017) Analysis and optimization of a micro-displacement sensor for compliant microgripper. Microsyst Technol 23:5375–5395CrossRef Thanh-Phong D et al (2017) Analysis and optimization of a micro-displacement sensor for compliant microgripper. Microsyst Technol 23:5375–5395CrossRef
go back to reference Tian Y, Shirinzadeh B, Zhang D (2009a) A flexure-based five-bar mechanism for micro/nano manipulation. Sens Actuators a: Phys 153:96–104CrossRef Tian Y, Shirinzadeh B, Zhang D (2009a) A flexure-based five-bar mechanism for micro/nano manipulation. Sens Actuators a: Phys 153:96–104CrossRef
go back to reference Tian Y, Shirinzadeh B, Zhang D (2009b) A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis Eng 33:160–166CrossRef Tian Y, Shirinzadeh B, Zhang D (2009b) A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis Eng 33:160–166CrossRef
go back to reference Tian Y, Shirinzadeh B, Zhang D, Alici G (2009c) Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mech Syst Sig Process 23:957–978CrossRef Tian Y, Shirinzadeh B, Zhang D, Alici G (2009c) Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mech Syst Sig Process 23:957–978CrossRef
go back to reference Tian Y, Shirinzadeh B, Zhang D, Liu X, Chetwynd D (2009d) Design and forward kinematics of the compliant micro-manipulator with lever mechanisms. Precis Eng 33:466–475CrossRef Tian Y, Shirinzadeh B, Zhang D, Liu X, Chetwynd D (2009d) Design and forward kinematics of the compliant micro-manipulator with lever mechanisms. Precis Eng 33:466–475CrossRef
go back to reference Wei Y, Xu Q (2017) Design of a PVDF-MFC force sensor for robot-assisted single cell microinjection. IEEE Sens J 17:3975–3982CrossRef Wei Y, Xu Q (2017) Design of a PVDF-MFC force sensor for robot-assisted single cell microinjection. IEEE Sens J 17:3975–3982CrossRef
go back to reference Wei Y, Xu Q (2019) Design and testing of a new force-sensing cell microinjector based on soft flexure mechanism. IEEE Sens J 19:6012–6019CrossRef Wei Y, Xu Q (2019) Design and testing of a new force-sensing cell microinjector based on soft flexure mechanism. IEEE Sens J 19:6012–6019CrossRef
go back to reference Wu Z, Xu Q (2019) Design, fabrication, and testing of a new compact piezo-driven flexure stage for vertical micro/nanopositioning. IEEE Trans Autom Sci Eng 16:908–918CrossRef Wu Z, Xu Q (2019) Design, fabrication, and testing of a new compact piezo-driven flexure stage for vertical micro/nanopositioning. IEEE Trans Autom Sci Eng 16:908–918CrossRef
go back to reference Wu YF, Zhou ZY (2002) Design calculations for flexure hinges. Rev Sci Instrum 73:3101–3106CrossRef Wu YF, Zhou ZY (2002) Design calculations for flexure hinges. Rev Sci Instrum 73:3101–3106CrossRef
go back to reference Yang C, Yan J, Dukic M, Hosseini N, Zhao J, Fantner GE (2016) Design of a high-bandwidth tripod scanner for high speed atomic force microscopy. Scanning 38:889–900CrossRef Yang C, Yan J, Dukic M, Hosseini N, Zhao J, Fantner GE (2016) Design of a high-bandwidth tripod scanner for high speed atomic force microscopy. Scanning 38:889–900CrossRef
go back to reference Zhang X, Zhang Y, Xu Q (2017) Design and control of a novel piezo-driven XY parallel nanopositioning stage. Microsyst Technol 23:1067–1080CrossRef Zhang X, Zhang Y, Xu Q (2017) Design and control of a novel piezo-driven XY parallel nanopositioning stage. Microsyst Technol 23:1067–1080CrossRef
go back to reference Zhao H, Han D, Zhang L, Bi S (2017) Design of a stiffness-adjustable compliant linear-motion mechanism. Precis Eng 48:305–314CrossRef Zhao H, Han D, Zhang L, Bi S (2017) Design of a stiffness-adjustable compliant linear-motion mechanism. Precis Eng 48:305–314CrossRef
Metadata
Title
Design and test of a linear micro-motion stage with adjustable stiffness and frequency
Authors
Ruiqi Li
Zhijun Yang
Bingyu Cai
Publication date
15-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 3/2023
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05433-w

Other articles of this Issue 3/2023

Microsystem Technologies 3/2023 Go to the issue