Skip to main content
Top
Published in: Microsystem Technologies 1/2015

01-01-2015 | Technical Paper

Design, fabrication and characterization of high performance SOI MEMS piezoresistive accelerometers

Authors: Anindya Lal Roy, Tarun Kanti Bhattacharyya

Published in: Microsystem Technologies | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Piezoresistive accelerometers have served as the frontrunners in micromachined accelerometer technology and have undergone modifications with the primary focus on device complexity and novel processes to circumvent performance trade-offs. This work comprises the analysis, design and development of micromachined SOI MEMS-based piezoresistive accelerometers for inertial sensing applications using minimalistic component design and a custom fabrication process to realize robust devices capable of withstanding more than ~106 cycles of error-free operation. Extensive simulation studies have been carried out to validate and tune the design parameters of the analytical models used. The devices have been subjected to an exhaustive range of static and dynamic tests to characterize their response which has been sensitive and highly linear with low noise, an intrinsic quality of piezoresistive sensors coupled with precision design and fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adams EN (1954) Elasto resistance in p-type Ge and Si. Phys Rev 96(3):803–804CrossRef Adams EN (1954) Elasto resistance in p-type Ge and Si. Phys Rev 96(3):803–804CrossRef
go back to reference Allen HV, Terry SC, de Bruin DW (1989) Accelerometer systems with self-testable features. Sens Actuators, A 20(1–2):153–161CrossRef Allen HV, Terry SC, de Bruin DW (1989) Accelerometer systems with self-testable features. Sens Actuators, A 20(1–2):153–161CrossRef
go back to reference Amini BV, Ayazi F (2004) A 2.5 V 14-bit ΣΔ CMOS SOI capacitive accelerometer. IEEE J Solid-State Circuits 39(12):2467–2476CrossRef Amini BV, Ayazi F (2004) A 2.5 V 14-bit ΣΔ CMOS SOI capacitive accelerometer. IEEE J Solid-State Circuits 39(12):2467–2476CrossRef
go back to reference Chen H, Bao MH, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. Sens Actuators, A 63(1):19–25CrossRef Chen H, Bao MH, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. Sens Actuators, A 63(1):19–25CrossRef
go back to reference Crazzolara H, Flach G, von Miinch W (1993) Piezoresistive accelerometer with overload protection and low cross-axis sensitivity. Sens Actuators, A 39(3):201–207CrossRef Crazzolara H, Flach G, von Miinch W (1993) Piezoresistive accelerometer with overload protection and low cross-axis sensitivity. Sens Actuators, A 39(3):201–207CrossRef
go back to reference Dutta A, Bhattacharyya TK (2011) Low offset, low noise, variable-gain interfacing circuit with a novel scheme for sensor sensitivity and offset compensation for MEMS based, Wheatstone bridge type, resistive smart sensor. In: Proceedings of the 24th International Conference on VLSI Design, Chennai Dutta A, Bhattacharyya TK (2011) Low offset, low noise, variable-gain interfacing circuit with a novel scheme for sensor sensitivity and offset compensation for MEMS based, Wheatstone bridge type, resistive smart sensor. In: Proceedings of the 24th International Conference on VLSI Design, Chennai
go back to reference Eklund EJ, Shkel AM (2007) Single-mask fabrication of high-G piezoresistive accelerometers with extended temperature range. IOP J Micromech Microeng 17(4):730–736CrossRef Eklund EJ, Shkel AM (2007) Single-mask fabrication of high-G piezoresistive accelerometers with extended temperature range. IOP J Micromech Microeng 17(4):730–736CrossRef
go back to reference Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101(3):944–961 Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101(3):944–961
go back to reference Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29(3):139–150CrossRef Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29(3):139–150CrossRef
go back to reference Huang S, Li X, Song Z, Wang Y, Yang H, Che L, Jiao J (2005) A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. IOP J Micromech Microeng 15(5):993–1000CrossRef Huang S, Li X, Song Z, Wang Y, Yang H, Che L, Jiao J (2005) A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. IOP J Micromech Microeng 15(5):993–1000CrossRef
go back to reference Kal S, Das S, Maurya DK, Biswas K, Ravi Sankar A, Lahiri SK ((2006)) CMOS compatible bulk micromachined piezoresistive accelerometer with low off-axis sensitivity. Microelectron J 37((1)):22–30CrossRef Kal S, Das S, Maurya DK, Biswas K, Ravi Sankar A, Lahiri SK ((2006)) CMOS compatible bulk micromachined piezoresistive accelerometer with low off-axis sensitivity. Microelectron J 37((1)):22–30CrossRef
go back to reference Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev 29(1):64–70CrossRef Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev 29(1):64–70CrossRef
go back to reference Kerr DR, Milnes AG (1963) Piezoresistance of diffused layers in cubic semiconductors. J Appl Phys 34(4):727–731CrossRef Kerr DR, Milnes AG (1963) Piezoresistance of diffused layers in cubic semiconductors. J Appl Phys 34(4):727–731CrossRef
go back to reference Kwon K, Park S (1998) A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and poly-silicon layer. Sens Actuators, A 66(1–3):250–255CrossRef Kwon K, Park S (1998) A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and poly-silicon layer. Sens Actuators, A 66(1–3):250–255CrossRef
go back to reference Li Y, Zheng Q, Hu Y, Xu Y (2011) Micromachined piezoresistive accelerometers based on an asymmetrically gapped cantilever. IEEE/ASME J Microelectromech Sys 20(1):83–94CrossRef Li Y, Zheng Q, Hu Y, Xu Y (2011) Micromachined piezoresistive accelerometers based on an asymmetrically gapped cantilever. IEEE/ASME J Microelectromech Sys 20(1):83–94CrossRef
go back to reference Partridge A, Reynolds JK, Chui BW, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. IEEE/ASME J Microelectromech Sys 9(1):58–66CrossRef Partridge A, Reynolds JK, Chui BW, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. IEEE/ASME J Microelectromech Sys 9(1):58–66CrossRef
go back to reference Ravi Sankar A, Das S, Lahiri SK (2009) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. Microsys Technol 15(4):511–518CrossRef Ravi Sankar A, Das S, Lahiri SK (2009) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. Microsys Technol 15(4):511–518CrossRef
go back to reference Roylance LM, Angell JB (1979) A batch-fabricated silicon accelerometer. IEEE Trans Electron Dev 26(12):1911–1917CrossRef Roylance LM, Angell JB (1979) A batch-fabricated silicon accelerometer. IEEE Trans Electron Dev 26(12):1911–1917CrossRef
go back to reference Seshia AA, Palaniapan M, Roessig TA, Howe RT, Gooch RW, Schimert TR, Montague S (2002) A vacuum packaged surface micromachined resonant accelerometer. IEEE/ASME J Microelectromech Sys 11(6):784–793CrossRef Seshia AA, Palaniapan M, Roessig TA, Howe RT, Gooch RW, Schimert TR, Montague S (2002) A vacuum packaged surface micromachined resonant accelerometer. IEEE/ASME J Microelectromech Sys 11(6):784–793CrossRef
go back to reference Shaoqun S, Jian C, Bao MH (1992) Analysis on twin-mass structure for a piezoresistive accelerometer. Sens Actuators, A 34(2):101–107CrossRef Shaoqun S, Jian C, Bao MH (1992) Analysis on twin-mass structure for a piezoresistive accelerometer. Sens Actuators, A 34(2):101–107CrossRef
go back to reference Sim JH, Cho CS, Kim JS, Lee JH, Lee JH (1998) Eight-beam piezoresistive accelerometer fabricated by using a porous-silicon etching method. Sens Actuators, A 66(1–3):273–278CrossRef Sim JH, Cho CS, Kim JS, Lee JH, Lee JH (1998) Eight-beam piezoresistive accelerometer fabricated by using a porous-silicon etching method. Sens Actuators, A 66(1–3):273–278CrossRef
go back to reference Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49CrossRef Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49CrossRef
go back to reference Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34(2):313–318CrossRef Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34(2):313–318CrossRef
go back to reference Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Trolier-McKinstry S (2003) Design, fabrication and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. IEEE/ASME J Microelectromech Sys 12(4):433–439CrossRef Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Trolier-McKinstry S (2003) Design, fabrication and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. IEEE/ASME J Microelectromech Sys 12(4):433–439CrossRef
go back to reference Wu J, Fedder GK, Carley LR (2004) A low-noise low-offset capacitive sensing amplifier for a 50 μg/rtHz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits 39(5):722–730CrossRef Wu J, Fedder GK, Carley LR (2004) A low-noise low-offset capacitive sensing amplifier for a 50 μg/rtHz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits 39(5):722–730CrossRef
go back to reference Yamada K (1982) Nonlinearity of the piezoresistance effect of p-type silicon diffused layers. IEEE Trans Electron Dev 29(1):71–77CrossRef Yamada K (1982) Nonlinearity of the piezoresistance effect of p-type silicon diffused layers. IEEE Trans Electron Dev 29(1):71–77CrossRef
Metadata
Title
Design, fabrication and characterization of high performance SOI MEMS piezoresistive accelerometers
Authors
Anindya Lal Roy
Tarun Kanti Bhattacharyya
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 1/2015
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-1904-y

Other articles of this Issue 1/2015

Microsystem Technologies 1/2015 Go to the issue