Skip to main content
Top

2024 | OriginalPaper | Chapter

Design Factors Towards Water Retention Ability of Water-Sensitive Urban Design (WSUD) in Tropical and Subtropical Climates: An Exploratory Literature Review

Authors : Chulalux Wanitchayapaisit, Damrongsak Rinchumphu, Pongsakorn Suppakittpaisarn

Published in: Urban Climate Change Adaptation

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water Sensitive Urban Design (WSUD) is a comprehensive approach to managing the quality and quantity of rainwater within urban settings and addressing the challenges posed by changes in natural infiltration and precipitation processes. Green Stormwater Infrastructure (GSI) is a key component of WSUD and is extensively utilized in Europe and the United States. GSI can take many forms. One example of GSI is the rain garden, which is frequently integrated into WSUD practices across various regions and communities. The research question for this study is to find guidance for rain gardens in Southeast Asia. The objective is to identify the design factors that affect water retention ability in rain gardens and to determine the specific measurements that can be applied in Southeast Asia and across the world In similar climates. An exploratory literature review method delves into current examples of design factors influencing the water retention ability of WSUD in the tropical and sub-tropical contexts of Southeast Asia. This research found limited studies focussing on WSUD in tropical and sub-tropical climates, limited discussion on local materials, and how planting design may impact WSUD performance. The research gap highlights the need for standardized measurement units and further exploration into the specific design factors influencing the performance of plants in the context of WSUD in tropical and subtropical climates. Moreover, future studies should explore additional aspects, such as investigating input values for modeling, to improve the capability of calculating water retention ability based on relevant plant factors. Furthermore, it could involve examining the water-absorbing performance of different tree species. Designers must work with researchers to create case studies and compile evidence for effective WSUD in the near future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abino, A. C., Castillo, J. A. A., & Lee, Y. J. (2014). Assessment of species diversity, biomass and carbon sequestration potential of a natural mangrove stand in Samar, the Philippines. Forest Science and Technology, 10(1), 2–8. Abino, A. C., Castillo, J. A. A., & Lee, Y. J. (2014). Assessment of species diversity, biomass and carbon sequestration potential of a natural mangrove stand in Samar, the Philippines. Forest Science and Technology, 10(1), 2–8.
go back to reference Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: Literature review and suggestions for future research. Water, Air, & Soil Pollution, 223, 4253–4273. Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: Literature review and suggestions for future research. Water, Air, & Soil Pollution, 223, 4253–4273.
go back to reference Akter, A. (2022). Stormwater management. In Rainwater Harvesting—Building a Water Smart City (pp. 117–163). Springer. Akter, A. (2022). Stormwater management. In Rainwater Harvesting—Building a Water Smart City (pp. 117–163). Springer.
go back to reference Ali, W., Takaijudin, H., Yusof, K. W., Osman, M., & Abdurrasheed, A. S. I. (2021). The common approaches of nitrogen removal in bioretention system. Sustainability, 13(5), 2575. Ali, W., Takaijudin, H., Yusof, K. W., Osman, M., & Abdurrasheed, A. S. I. (2021). The common approaches of nitrogen removal in bioretention system. Sustainability, 13(5), 2575.
go back to reference Baek, S.-S., Ligaray, M., Pyo, J., Park, J.-P., Kang, J.-H., Pachepsky, Y., Chun, J. A., & Cho, K. H. (2020). A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. Journal of Hydrology, 586, 124886. Baek, S.-S., Ligaray, M., Pyo, J., Park, J.-P., Kang, J.-H., Pachepsky, Y., Chun, J. A., & Cho, K. H. (2020). A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. Journal of Hydrology, 586, 124886.
go back to reference Baird, J. B., Winston, R. J., & Hunt, W. F. (2020). Evaluating the hydrologic and water quality performance of novel infiltrating wet retention ponds. Blue-Green Systems, 2(1), 282–299. Baird, J. B., Winston, R. J., & Hunt, W. F. (2020). Evaluating the hydrologic and water quality performance of novel infiltrating wet retention ponds. Blue-Green Systems, 2(1), 282–299.
go back to reference Chen, S. S., Tsang, D. C., He, M., Sun, Y., Lau, L. S., Leung, R. W., Lau, E. S., Hou, D., Liu, A., & Mohanty, S. (2021). Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. Journal of Cleaner Production, 280, 124418. Chen, S. S., Tsang, D. C., He, M., Sun, Y., Lau, L. S., Leung, R. W., Lau, E. S., Hou, D., Liu, A., & Mohanty, S. (2021). Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. Journal of Cleaner Production, 280, 124418.
go back to reference Coombes, P. J., Argue, J. R., & Kuczera, G. (2000). Figtree Place: A case study in water sensitive urban development (WSUD). Urban Water, 1(4), 335–343. Coombes, P. J., Argue, J. R., & Kuczera, G. (2000). Figtree Place: A case study in water sensitive urban development (WSUD). Urban Water, 1(4), 335–343.
go back to reference Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography, 37(1), 2–28. Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography, 37(1), 2–28.
go back to reference Dagenais, D., Brisson, J., & Fletcher, T. D. (2018). The role of plants in bioretention systems; does the science underpin current guidance? Ecological Engineering, 120, 532–545. Dagenais, D., Brisson, J., & Fletcher, T. D. (2018). The role of plants in bioretention systems; does the science underpin current guidance? Ecological Engineering, 120, 532–545.
go back to reference Davar, S. A., Rostami, P., & Moradi, M. (2021). Planting design utilizing phytoremediation of garden-rangeland ecotypes in urban green space (case study of the new city of Pardis). PalArch’s Journal of Archaeology of Egypt/egyptology, 18(18), 547–558. Davar, S. A., Rostami, P., & Moradi, M. (2021). Planting design utilizing phytoremediation of garden-rangeland ecotypes in urban green space (case study of the new city of Pardis). PalArch’s Journal of Archaeology of Egypt/egyptology, 18(18), 547–558.
go back to reference Dell, T., Razzaghmanesh, M., Sharvelle, S., & Arabi, M. (2021). Development and application of a SWMM-Based simulation model for municipal scale hydrologic assessments. Water, 13(12), 1644. Dell, T., Razzaghmanesh, M., Sharvelle, S., & Arabi, M. (2021). Development and application of a SWMM-Based simulation model for municipal scale hydrologic assessments. Water, 13(12), 1644.
go back to reference Dunnett, N., & Clayden, A. (2007). Rain gardens. Managing water sustainably in the garden and designed landscape. Dunnett, N., & Clayden, A. (2007). Rain gardens. Managing water sustainably in the garden and designed landscape.
go back to reference Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of Hydrology, 562, 564–576. Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of Hydrology, 562, 564–576.
go back to reference Emanuel, R., Godwin, D., & Stoughton, C. (2010a). The Oregon rain garden guide: a step-by-step guide to landscaping for clean water and healthy streams. Emanuel, R., Godwin, D., & Stoughton, C. (2010a). The Oregon rain garden guide: a step-by-step guide to landscaping for clean water and healthy streams.
go back to reference Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739–799. Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739–799.
go back to reference Fassman-Beck, E., Wang, S., Simcock, R., & Liu, R. (2015). Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity and water holding capacity. Journal of Sustainable Water in the Built Environment, 1(4), 04015003. Fassman-Beck, E., Wang, S., Simcock, R., & Liu, R. (2015). Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity and water holding capacity. Journal of Sustainable Water in the Built Environment, 1(4), 04015003.
go back to reference Ferrans, P., Torres, M. N., Temprano, J., & Sánchez, J. P. R. (2022). Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Science of the Total Environment, 806, 150447. Ferrans, P., Torres, M. N., Temprano, J., & Sánchez, J. P. R. (2022). Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Science of the Total Environment, 806, 150447.
go back to reference Ferreira, J. C., Monteiro, R., & Silva, V. R. (2021). Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability, 13(15), 8432. Ferreira, J. C., Monteiro, R., & Silva, V. R. (2021). Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability, 13(15), 8432.
go back to reference Fowdar, H., Payne, E., Deletic, A., Zhang, K., & McCarthy, D. (2022a). Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 175, 106501. Fowdar, H., Payne, E., Deletic, A., Zhang, K., & McCarthy, D. (2022a). Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 175, 106501.
go back to reference Fowdar, H. S., Neo, T. H., Ong, S. L., Hu, J., & McCarthy, D. T. (2022b). Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. Journal of Environmental Management, 316, 115259. Fowdar, H. S., Neo, T. H., Ong, S. L., Hu, J., & McCarthy, D. T. (2022b). Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. Journal of Environmental Management, 316, 115259.
go back to reference Green, A. (2019). Sustainable drainage systems (SuDS) in the UK. Urban Stormwater and flood management: Enhancing the Liveability of cities, pp. 69–101. Green, A. (2019). Sustainable drainage systems (SuDS) in the UK. Urban Stormwater and flood management: Enhancing the Liveability of cities, pp. 69–101.
go back to reference Gülbaz, S., & Kazezyılmaz-Alhan, C. M. (2017). Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. Journal of Hydrologic Engineering, 22(1), D4016003. Gülbaz, S., & Kazezyılmaz-Alhan, C. M. (2017). Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. Journal of Hydrologic Engineering, 22(1), D4016003.
go back to reference He, Y., Lin, E. S., Tan, C. L., Tan, P. Y., & Wong, N. H. (2021). Quantitative evaluation of plant evapotranspiration effect for green roof in tropical area: A case study in Singapore. Energy and Buildings, 241, 110973. He, Y., Lin, E. S., Tan, C. L., Tan, P. Y., & Wong, N. H. (2021). Quantitative evaluation of plant evapotranspiration effect for green roof in tropical area: A case study in Singapore. Energy and Buildings, 241, 110973.
go back to reference Heng, N. T. (2021). Monitoring and Modelling of Active, Beautiful and Clean (ABC) Waters Design Features in Urban Singapore National University of Singapore (Singapore)]. Heng, N. T. (2021). Monitoring and Modelling of Active, Beautiful and Clean (ABC) Waters Design Features in Urban Singapore National University of Singapore (Singapore)].
go back to reference Huang, J., Reneau, R., & Hagedorn, C. (2000). Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Research, 34(9), 2582–2588. Huang, J., Reneau, R., & Hagedorn, C. (2000). Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Research, 34(9), 2582–2588.
go back to reference Hunt, W. F., Lord, B., Loh, B., & Sia, A. (2015). Plant selection for bioretention systems and stormwater treatment practices. Springer Nature. Hunt, W. F., Lord, B., Loh, B., & Sia, A. (2015). Plant selection for bioretention systems and stormwater treatment practices. Springer Nature.
go back to reference Ignatieva, M., Meurk, C., Van Roon, M., Simcock, R., & Stewart, G. H. (2008). How to put nature into our neighbourhoods: Application of Low Impact Urban Design and Development (LIUDD) principles, with a biodiversity focus, for New Zealand developers and homeowners. Ignatieva, M., Meurk, C., Van Roon, M., Simcock, R., & Stewart, G. H. (2008). How to put nature into our neighbourhoods: Application of Low Impact Urban Design and Development (LIUDD) principles, with a biodiversity focus, for New Zealand developers and homeowners.
go back to reference Jaber, F., Woodson, D., LaChance, C., & York, C. (2012). Stormwater management: Rain gardens. The Department of Soil and Crop Sciences and Texas A&M AgriLife Communications, The Texas A&M System, USA, 20. Jaber, F., Woodson, D., LaChance, C., & York, C. (2012). Stormwater management: Rain gardens. The Department of Soil and Crop Sciences and Texas A&M AgriLife Communications, The Texas A&M System, USA, 20.
go back to reference Jiang, C., Lv, P., Li, J., & Gao, J. (2022). Rapid determination methods for extent parameters of typical LID facilities in Urban stormwater management. Journal of Environmental Engineering, 148(10), 04022064. Jiang, C., Lv, P., Li, J., & Gao, J. (2022). Rapid determination methods for extent parameters of typical LID facilities in Urban stormwater management. Journal of Environmental Engineering, 148(10), 04022064.
go back to reference Kasprzyk, M., Szpakowski, W., Poznańska, E., Boogaard, F. C., Bobkowska, K., & Gajewska, M. (2022). Technical solutions and benefits of introducing rain gardens–Gdańsk case study. Science of the Total Environment, 835, 155487. Kasprzyk, M., Szpakowski, W., Poznańska, E., Boogaard, F. C., Bobkowska, K., & Gajewska, M. (2022). Technical solutions and benefits of introducing rain gardens–Gdańsk case study. Science of the Total Environment, 835, 155487.
go back to reference Kim, K., & Beard, J. (1988). Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics. Crop Science, 28(2), 328–331. Kim, K., & Beard, J. (1988). Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics. Crop Science, 28(2), 328–331.
go back to reference Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114. Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114.
go back to reference Lee, J., Bae, S., Lee, W. H., & Gil, K. (2022). Effect of surface area to catchment area ratio on pollutant removal efficiency in vegetation-type facilities. Ecological Engineering, 179, 106609. Lee, J., Bae, S., Lee, W. H., & Gil, K. (2022). Effect of surface area to catchment area ratio on pollutant removal efficiency in vegetation-type facilities. Ecological Engineering, 179, 106609.
go back to reference Li, J., Sun, C., Chen, W., Zhang, Q., Zhou, S., Lin, R., & Wang, Y. (2022). Groundwater quality and associated human health risk in a typical basin of the Eastern Chinese Loess Plateau. Water, 14(9), 1371. Li, J., Sun, C., Chen, W., Zhang, Q., Zhou, S., Lin, R., & Wang, Y. (2022). Groundwater quality and associated human health risk in a typical basin of the Eastern Chinese Loess Plateau. Water, 14(9), 1371.
go back to reference Liu, Q., Cui, W., Tian, Z., Tang, Y., Tillotson, M., & Liu, J. (2022). Stormwater management modeling in “Sponge City” construction: Current state and future directions. Frontiers in Environmental Science, 9, 721. Liu, Q., Cui, W., Tian, Z., Tang, Y., Tillotson, M., & Liu, J. (2022). Stormwater management modeling in “Sponge City” construction: Current state and future directions. Frontiers in Environmental Science, 9, 721.
go back to reference Liu, T., Lawluvy, Y., Shi, Y., & Yap, P.-S. (2021). Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water, Air, & Soil Pollution, 232(9), 344. Liu, T., Lawluvy, Y., Shi, Y., & Yap, P.-S. (2021). Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water, Air, & Soil Pollution, 232(9), 344.
go back to reference Matthews, T., Lo, A. Y., & Byrne, J. A. (2015). Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landscape and Urban Planning, 138, 155–163. Matthews, T., Lo, A. Y., & Byrne, J. A. (2015). Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landscape and Urban Planning, 138, 155–163.
go back to reference Neo, T. H., Xu, D., Fowdar, H., McCarthy, D. T., Chen, E. Y., Lee, T. M., Ong, G. S., Lim, F. Y., Ong, S. L., & Hu, J. (2022). Evaluation of active, beautiful, clean waters design features in tropical urban cities: A case study in Singapore. Water, 14(3), 468. Neo, T. H., Xu, D., Fowdar, H., McCarthy, D. T., Chen, E. Y., Lee, T. M., Ong, G. S., Lim, F. Y., Ong, S. L., & Hu, J. (2022). Evaluation of active, beautiful, clean waters design features in tropical urban cities: A case study in Singapore. Water, 14(3), 468.
go back to reference Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2018). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. In Planning for Climate Change (pp. 233–249). Routledge. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2018). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. In Planning for Climate Change (pp. 233–249). Routledge.
go back to reference Payne, E. G., Pham, T., Deletic, A., Hatt, B. E., Cook, P. L., & Fletcher, T. D. (2018). Which species? A decision-support tool to guide plant selection in stormwater biofilters. Advances in Water Resources, 113, 86–99. Payne, E. G., Pham, T., Deletic, A., Hatt, B. E., Cook, P. L., & Fletcher, T. D. (2018). Which species? A decision-support tool to guide plant selection in stormwater biofilters. Advances in Water Resources, 113, 86–99.
go back to reference Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.
go back to reference Pressman, A. (2007). Architectural graphic standards. John Wiley & Sons. Pressman, A. (2007). Architectural graphic standards. John Wiley & Sons.
go back to reference Radcliffe, J. C. (2019). History of water sensitive urban design/low impact development adoption in Australia and internationally. In Approaches to water sensitive urban design (pp. 1–24). Elsevier. Radcliffe, J. C. (2019). History of water sensitive urban design/low impact development adoption in Australia and internationally. In Approaches to water sensitive urban design (pp. 1–24). Elsevier.
go back to reference Reis, V. E. (2019). Techniques for Investigating Causes of Green Stormwater Infrastructure Underperformance and Recommendations for Rehabilitation. Villanova University. Reis, V. E. (2019). Techniques for Investigating Causes of Green Stormwater Infrastructure Underperformance and Recommendations for Rehabilitation. Villanova University.
go back to reference Rinchumphu, D., Tangsongsuwan, R., Kridakorn Na Ayudhya, T., Irvine, K., Chua, L., Suppakittpaisarn, P., & Chakrawattana, N. (2021). Potential Evaluation of Urban Bioretention Design [Grant]. Chiang Mai, Thailand. Rinchumphu, D., Tangsongsuwan, R., Kridakorn Na Ayudhya, T., Irvine, K., Chua, L., Suppakittpaisarn, P., & Chakrawattana, N. (2021). Potential Evaluation of Urban Bioretention Design [Grant]. Chiang Mai, Thailand.
go back to reference Ristianti, N. S., Bashit, N., Ulfiana, D., & Windarto, Y. E. (2022). Bioretention Basin, Rain Garden, and Swales Track Concepts through Vegetated-WSUD: Sustainable Rural Stormwater Management in Klaten Regency. IOP Conference Series: Earth and Environmental Science, Ristianti, N. S., Bashit, N., Ulfiana, D., & Windarto, Y. E. (2022). Bioretention Basin, Rain Garden, and Swales Track Concepts through Vegetated-WSUD: Sustainable Rural Stormwater Management in Klaten Regency. IOP Conference Series: Earth and Environmental Science,
go back to reference Sañudo-Fontaneda, L. A., Roces-García, J., Coupe, S. J., Barrios-Crespo, E., Rey-Mahía, C., Álvarez-Rabanal, F. P., & Lashford, C. (2020). Descriptive analysis of the performance of a vegetated swale through long-term hydrological monitoring: A case study from Coventry, UK. Water, 12(10), 2781. Sañudo-Fontaneda, L. A., Roces-García, J., Coupe, S. J., Barrios-Crespo, E., Rey-Mahía, C., Álvarez-Rabanal, F. P., & Lashford, C. (2020). Descriptive analysis of the performance of a vegetated swale through long-term hydrological monitoring: A case study from Coventry, UK. Water, 12(10), 2781.
go back to reference Shao, R., Shao, W., & Wang, Y. (2023). Inferring the influence of urban vegetation on urban water storage capacity from evapotranspiration recession. Journal of Hydrology, 620, 129355. Shao, R., Shao, W., & Wang, Y. (2023). Inferring the influence of urban vegetation on urban water storage capacity from evapotranspiration recession. Journal of Hydrology, 620, 129355.
go back to reference Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), e1507. Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), e1507.
go back to reference Skorobogatov, A., He, J., Chu, A., Valeo, C., & van Duin, B. (2020). The impact of media, plants and their interactions on bioretention performance: A review. Science of the Total Environment, 715, 136918. Skorobogatov, A., He, J., Chu, A., Valeo, C., & van Duin, B. (2020). The impact of media, plants and their interactions on bioretention performance: A review. Science of the Total Environment, 715, 136918.
go back to reference Suppakittpaisarn, P., Jiang, X., & Sullivan, W. C. (2017). Green infrastructure, green stormwater infrastructure, and human health: A review. Current Landscape Ecology Reports, 2, 96–110. Suppakittpaisarn, P., Jiang, X., & Sullivan, W. C. (2017). Green infrastructure, green stormwater infrastructure, and human health: A review. Current Landscape Ecology Reports, 2, 96–110.
go back to reference Swedberg, R. (2020). Exploratory research. The production of knowledge: Enhancing progress in social science, pp. 17–41. Swedberg, R. (2020). Exploratory research. The production of knowledge: Enhancing progress in social science, pp. 17–41.
go back to reference Tu, X., & Tian, T. (2015). Six questions towards a Sponge City–report on power of public policy: Sponge City and the trend of landscape architecture. Landscape Architecture Frontiers, 3(2), 22–32. Tu, X., & Tian, T. (2015). Six questions towards a Sponge City–report on power of public policy: Sponge City and the trend of landscape architecture. Landscape Architecture Frontiers, 3(2), 22–32.
go back to reference Valley, C. (2010). Low impact development stormwater management planning and design guide. In. Valley, C. (2010). Low impact development stormwater management planning and design guide. In.
go back to reference van Roon, M., Ignatieva, M., Meurk, C., Simcock, R., & Stewart, G. (2008). How to put nature into our neighbourhoods: Application of low impact urban design and development (LIUDD). principles, with a biodiversity focus, for New Zealand developers and homeowners. In: Manaaki Whenua Press. van Roon, M., Ignatieva, M., Meurk, C., Simcock, R., & Stewart, G. (2008). How to put nature into our neighbourhoods: Application of low impact urban design and development (LIUDD). principles, with a biodiversity focus, for New Zealand developers and homeowners. In: Manaaki Whenua Press.
go back to reference Venvik, G., & C. Boogaard, F. (2020). Infiltration capacity of rain gardens using full-scale test method: effect of infiltration system on groundwater levels in Bergen, Norway. Land, 9(12), 520 Venvik, G., & C. Boogaard, F. (2020). Infiltration capacity of rain gardens using full-scale test method: effect of infiltration system on groundwater levels in Bergen, Norway. Land, 9(12), 520
go back to reference Wahab, S., Mamtaz, R., & Islam, M. (2016). Applicability of water sensitive Urban Design (WSUD) in Dhaka City. In Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development (ICCESD2016). Khulna, Bangladesh, Wahab, S., Mamtaz, R., & Islam, M. (2016). Applicability of water sensitive Urban Design (WSUD) in Dhaka City. In Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development (ICCESD2016). Khulna, Bangladesh,
go back to reference Wang, H., Cheng, X., Man, L., Li, N., Wang, J., & Yu, Q. (2016). Challenges and future improvements to China’s sponge city construction. International Low Impact Development Conference China Wang, H., Cheng, X., Man, L., Li, N., Wang, J., & Yu, Q. (2016). Challenges and future improvements to China’s sponge city construction. International Low Impact Development Conference China
go back to reference Wanitchayapaisit, C., Charoenlertthanakit, N., Surinseng, V., Yaipimol, E., Rinchumphu, D., & Suppakittpaisarn, P. (2023). Enhancing water-sensitive urban design in Chiang Mai through a research-design collaboration. Sustainability, 15(22), 16127. Wanitchayapaisit, C., Charoenlertthanakit, N., Surinseng, V., Yaipimol, E., Rinchumphu, D., & Suppakittpaisarn, P. (2023). Enhancing water-sensitive urban design in Chiang Mai through a research-design collaboration. Sustainability, 15(22), 16127.
go back to reference Wanitchayapaisit, C., Suppakittpaisarn, P., Charoenlertthanakit, N., Surinseng, V., Yaipimol, E., & Rinchumphu, D. (2022). Rain garden design for stormwater management in Chiang Mai, Thailand: A Research-through-Design Study. Nakhara: Journal of Environmental Design and Planning, 21(3), 222–222. Wanitchayapaisit, C., Suppakittpaisarn, P., Charoenlertthanakit, N., Surinseng, V., Yaipimol, E., & Rinchumphu, D. (2022). Rain garden design for stormwater management in Chiang Mai, Thailand: A Research-through-Design Study. Nakhara: Journal of Environmental Design and Planning, 21(3), 222–222.
go back to reference Wella-Hewage, C. S., Alankarage Hewa, G., & Pezzaniti, D. (2016). Can water sensitive urban design systems help to preserve natural channel-forming flow regimes in an urbanised catchment? Water Science and Technology, 73(1), 78–87. Wella-Hewage, C. S., Alankarage Hewa, G., & Pezzaniti, D. (2016). Can water sensitive urban design systems help to preserve natural channel-forming flow regimes in an urbanised catchment? Water Science and Technology, 73(1), 78–87.
go back to reference Yan, H., Lipeme Kouyi, G., Gonzalez-Merchan, C., Becouze-Lareure, C., Sebastian, C., Barraud, S., & Bertrand-Krajewski, J.-L. (2014). Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin. Environmental Science and Pollution Research, 21(8), 5347–5356. Yan, H., Lipeme Kouyi, G., Gonzalez-Merchan, C., Becouze-Lareure, C., Sebastian, C., Barraud, S., & Bertrand-Krajewski, J.-L. (2014). Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin. Environmental Science and Pollution Research, 21(8), 5347–5356.
go back to reference Yuan, J., Dunnett, N., & Stovin, V. (2017). The influence of vegetation on rain garden hydrological performance. Urban Water Journal, 14(10), 1083–1089. Yuan, J., Dunnett, N., & Stovin, V. (2017). The influence of vegetation on rain garden hydrological performance. Urban Water Journal, 14(10), 1083–1089.
go back to reference Zhang, K., Manuelpillai, D., Raut, B., Deletic, A., & Bach, P. M. (2019). Evaluating the reliability of stormwater treatment systems under various future climate conditions. Journal of Hydrology, 568, 57–66. Zhang, K., Manuelpillai, D., Raut, B., Deletic, A., & Bach, P. M. (2019). Evaluating the reliability of stormwater treatment systems under various future climate conditions. Journal of Hydrology, 568, 57–66.
go back to reference Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992. Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992.
go back to reference Zuniga-Teran, A. A., Gerlak, A. K., Mayer, B., Evans, T. P., & Lansey, K. E. (2020). Urban resilience and green infrastructure systems: Towards a multidimensional evaluation. Current Opinion in Environmental Sustainability, 44, 42–47. Zuniga-Teran, A. A., Gerlak, A. K., Mayer, B., Evans, T. P., & Lansey, K. E. (2020). Urban resilience and green infrastructure systems: Towards a multidimensional evaluation. Current Opinion in Environmental Sustainability, 44, 42–47.
Metadata
Title
Design Factors Towards Water Retention Ability of Water-Sensitive Urban Design (WSUD) in Tropical and Subtropical Climates: An Exploratory Literature Review
Authors
Chulalux Wanitchayapaisit
Damrongsak Rinchumphu
Pongsakorn Suppakittpaisarn
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65088-8_6