Skip to main content


Swipe to navigate through the articles of this issue

01-07-2017 | Original Article | Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017

Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy

Chinese Journal of Mechanical Engineering > Issue 4/2017
Xiao-Ning Fan, Bo Zhi
Important notes
Supported by National Natural Science Foundation of China (Grant No. 51275329)


Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.

Please log in to get access to this content

About this article

Other articles of this Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017 Go to the issue

Premium Partners

    Image Credits