Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2022

26-01-2022

Design Method of Reinforcement Structure with Symmetric Pairs of Layers by the Example of Composite Gas Tank

Authors: A. N. Polilov, O. Yu. Sklemina, N. A. Tatus’

Published in: Mechanics of Composite Materials | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple method for calculating wound fiber-reinforced composite gas tanks, with a symmetric reinforcement structure, using pairs of layers (plies) is proposed. The calculation with pairs of layers instead of monolayers turns out to be simpler and uses elastic and strength parameters that are reliably determined in experiments. The using of simple strength criteria is substantiated, which, under a biaxial tension, led to a limiting surface bounded by three rectilinear segments that determine various fracture mechanisms. A simple way to optimize the reinforcement structure using a thread model is shown. The goal of the optimization considered was the achievement of a minimum difference between the safety factors for all pairs of layers. An increasing critical pressure in the composite pressure vessel was achieved by a simple selection of the number of layers and reinforcement angles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. F. Obraztsov, V. V. Vasiliev, and V. A. Bunakov, Optimum Reinforcement of Shells of Rotation Made from Composite Materials [in Russian], Mashinostroenie, Moscow (1977). I. F. Obraztsov, V. V. Vasiliev, and V. A. Bunakov, Optimum Reinforcement of Shells of Rotation Made from Composite Materials [in Russian], Mashinostroenie, Moscow (1977).
2.
go back to reference N. A. Alfutov, P. A. Zinoviev, and V. G. Popov, Calculation of Multilayered Plates and Shells Made of Composite Materials [in Russian], Mashinostroenie, Moscow (1984). N. A. Alfutov, P. A. Zinoviev, and V. G. Popov, Calculation of Multilayered Plates and Shells Made of Composite Materials [in Russian], Mashinostroenie, Moscow (1984).
3.
go back to reference Yu. S. Solomonov, V. P. Georgievskii, A. Ya. Nedbaj, and V. A. Andryushin, Calculation Methods for Cylindrical Shells Made of Composite Materials [in Russian], Fizmatlit, Moscow (2009). Yu. S. Solomonov, V. P. Georgievskii, A. Ya. Nedbaj, and V. A. Andryushin, Calculation Methods for Cylindrical Shells Made of Composite Materials [in Russian], Fizmatlit, Moscow (2009).
4.
go back to reference Ch. Huang, M. Ren, T. Li, X. Chang, Y. and Lei, “Trans-scale modeling framework for failure analysis of cryogenic composite tanks,” Composites, Part B, 85, 41-49 (2016). Ch. Huang, M. Ren, T. Li, X. Chang, Y. and Lei, “Trans-scale modeling framework for failure analysis of cryogenic composite tanks,” Composites, Part B, 85, 41-49 (2016).
5.
go back to reference D. M. Grogan, C. M. Ó Brádaigh, J. P. McGarry, and S. B. Leen, “Damage and permeability in tape-laid thermoplastic composite cryogenic tanks,” Composites, Part A, 78, 390-402 (2015).CrossRef D. M. Grogan, C. M. Ó Brádaigh, J. P. McGarry, and S. B. Leen, “Damage and permeability in tape-laid thermoplastic composite cryogenic tanks,” Composites, Part A, 78, 390-402 (2015).CrossRef
6.
go back to reference E. V. Amelina, A. E. Burov, S. K. Golushko, A. M. Lepikhin, V. V. Moskvichev, and A. V. Yurchenko, “Experimental and computational estimation of the strength of a metal-composite pressure vessel,” Vychisl. Tekhnol., 21, No. 5, 3-21 (2016). E. V. Amelina, A. E. Burov, S. K. Golushko, A. M. Lepikhin, V. V. Moskvichev, and A. V. Yurchenko, “Experimental and computational estimation of the strength of a metal-composite pressure vessel,” Vychisl. Tekhnol., 21, No. 5, 3-21 (2016).
7.
go back to reference A. E. Burov and A. M. Lepikhin, “Numerical simulation of the load-carrying capacity of a high-pressure metal composite vessel,” Probl. Mashinostr. Nadezh. Mash., 45, No. 5, 443-450 (2016). A. E. Burov and A. M. Lepikhin, “Numerical simulation of the load-carrying capacity of a high-pressure metal composite vessel,” Probl. Mashinostr. Nadezh. Mash., 45, No. 5, 443-450 (2016).
8.
go back to reference O. Yu. Sklemina, A. N. Polilov, and N. А. Tatus’, “Analytical and finite element method of calculation of multi-shell gas tanks,” IOP Conf. Ser.: Mater. Sci. Eng., Moscow, 4-6 December (2020). O. Yu. Sklemina, A. N. Polilov, and N. А. Tatus’, “Analytical and finite element method of calculation of multi-shell gas tanks,” IOP Conf. Ser.: Mater. Sci. Eng., Moscow, 4-6 December (2020).
9.
go back to reference K. Masakazu, K. Iwasaki, P. Reis, C. Butter Bez, and R. De Medeiros, “Methodology for composite pressure balloon optimization based on CLT,” 5th Brazilian Conf. on Composite Materials (BCCM5), Jan. (2021). K. Masakazu, K. Iwasaki, P. Reis, C. Butter Bez, and R. De Medeiros, “Methodology for composite pressure balloon optimization based on CLT,” 5th Brazilian Conf. on Composite Materials (BCCM5), Jan. (2021).
10.
go back to reference W. Mahdy and H. Kamel, “Design of optimum filament wound pressure balloon with integrated end domes,” Proc. Int. Conf. on Aerospace Sciences and Aviation Technology, 16 (AEROSPACE SCIENCES), May, 2015. W. Mahdy and H. Kamel, “Design of optimum filament wound pressure balloon with integrated end domes,” Proc. Int. Conf. on Aerospace Sciences and Aviation Technology, 16 (AEROSPACE SCIENCES), May, 2015.
11.
go back to reference L. W. Zhang, Z. Pan, and K. M. Liew, “Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials,” Computer Methods in Appl. Mech. and Eng., 379, 113754 (2021). L. W. Zhang, Z. Pan, and K. M. Liew, “Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials,” Computer Methods in Appl. Mech. and Eng., 379, 113754 (2021).
12.
go back to reference D. Cohen, S. C. Mantell, and L. Zhao, “The effect of fiber volume fraction on filament wound composite pressure balloon strength,” Composites, Part B, 32, No. 5, 413-429 (2001).CrossRef D. Cohen, S. C. Mantell, and L. Zhao, “The effect of fiber volume fraction on filament wound composite pressure balloon strength,” Composites, Part B, 32, No. 5, 413-429 (2001).CrossRef
13.
go back to reference Z. Guo, Z. Li, J. Cui, Y. Li, and Y. Luan, “The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells,” Multidiscipline Modeling in Materials and Structures, 16, No. 3, 508-518 (2019).CrossRef Z. Guo, Z. Li, J. Cui, Y. Li, and Y. Luan, “The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells,” Multidiscipline Modeling in Materials and Structures, 16, No. 3, 508-518 (2019).CrossRef
14.
go back to reference P. Geng, Q. Wang, and J. Xing, “Analytical model for stress and deformation of multiple-winding-angle filament-wound composite tubes/balloons under multiple combined loads,” Appl. Math. Model., 94, 576-596 (2021).CrossRef P. Geng, Q. Wang, and J. Xing, “Analytical model for stress and deformation of multiple-winding-angle filament-wound composite tubes/balloons under multiple combined loads,” Appl. Math. Model., 94, 576-596 (2021).CrossRef
15.
go back to reference M. Heidari-Rarani and M. Ahmadi-Jebeli, “Finite element modeling of failure in IV type composite pressure balloon using WCM plug-in in ABAQUS software,” Modares Mech. Eng., 18, No. 4, 191-200 (2018). M. Heidari-Rarani and M. Ahmadi-Jebeli, “Finite element modeling of failure in IV type composite pressure balloon using WCM plug-in in ABAQUS software,” Modares Mech. Eng., 18, No. 4, 191-200 (2018).
16.
go back to reference T. K. Hwang, C. S. Hong, and C. G. Kim, “Probabilistic deformation and strength prediction for a filament wound pressure balloon,” Composites, Part B, 34, No. 5, 481-497 (2003).CrossRef T. K. Hwang, C. S. Hong, and C. G. Kim, “Probabilistic deformation and strength prediction for a filament wound pressure balloon,” Composites, Part B, 34, No. 5, 481-497 (2003).CrossRef
17.
go back to reference S. S. Rao and M. A. Alazwari, “Failure modeling and analysis of composite laminates: Interval-based approaches,” J. Reinf. Plastics and Compos., 39, 817-836 (2020).CrossRef S. S. Rao and M. A. Alazwari, “Failure modeling and analysis of composite laminates: Interval-based approaches,” J. Reinf. Plastics and Compos., 39, 817-836 (2020).CrossRef
18.
go back to reference A. K. Malmeister, “Geometry of theories of strength,” Mech. of Polymers, 2, No. 4, 519-534 (1966). A. K. Malmeister, “Geometry of theories of strength,” Mech. of Polymers, 2, No. 4, 519-534 (1966).
19.
go back to reference A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Rigid Polymer Materials, Zinatne, Riga (1967). A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Rigid Polymer Materials, Zinatne, Riga (1967).
20.
go back to reference S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 2, No. 1, 191-206 (1971). S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 2, No. 1, 191-206 (1971).
21.
go back to reference Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef
22.
go back to reference N. Polilov, “Method of calculating the strength of oblique-reinforced composites in plane stress,” Mech. Compos. Mater., 16, No. 2, 221-226 (1980).CrossRef N. Polilov, “Method of calculating the strength of oblique-reinforced composites in plane stress,” Mech. Compos. Mater., 16, No. 2, 221-226 (1980).CrossRef
23.
go back to reference A. N. Polilov and N. A. Tatus’, “Experimental substantiation of strength criteria for fibrous composites exhibiting directional fracture behaviour,” Vestn. PNRPU (Perm National Research Polytechnic University), No. 2, 140-166 (2012). A. N. Polilov and N. A. Tatus’, “Experimental substantiation of strength criteria for fibrous composites exhibiting directional fracture behaviour,” Vestn. PNRPU (Perm National Research Polytechnic University), No. 2, 140-166 (2012).
24.
go back to reference A. N. Polilov, Problems of the Mechanics of Composites [in Russian], Nauka, Fizmatlit, Moscow (2015). A. N. Polilov, Problems of the Mechanics of Composites [in Russian], Nauka, Fizmatlit, Moscow (2015).
25.
go back to reference I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites, Part A, 38, 2333-2341 (2007).CrossRef I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites, Part A, 38, 2333-2341 (2007).CrossRef
26.
go back to reference M. V. Kozlov and S. V. Sheshenin, “Modeling the progressive failure of laminated composites,” Mech. Compos. Mater., 51, 695-706 (2016).CrossRef M. V. Kozlov and S. V. Sheshenin, “Modeling the progressive failure of laminated composites,” Mech. Compos. Mater., 51, 695-706 (2016).CrossRef
27.
go back to reference K. Hoos, E. V. Iarve, M. Braginsky, E. Zhou, and D. H. Mollenhauer, “Static strength prediction in laminated composites by using discrete damage modeling,” J. Compos. Mater., 51, 1473-1492 (2017).CrossRef K. Hoos, E. V. Iarve, M. Braginsky, E. Zhou, and D. H. Mollenhauer, “Static strength prediction in laminated composites by using discrete damage modeling,” J. Compos. Mater., 51, 1473-1492 (2017).CrossRef
28.
go back to reference H. Zhu, Z. X. Guo, M. Zhu, J. J. Cui, Q. He, and Y. C. Li, “A progressive FE failure model for laminates under biaxial loading,” Mech. Compos. Mater., 56, 207-214 (2020).CrossRef H. Zhu, Z. X. Guo, M. Zhu, J. J. Cui, Q. He, and Y. C. Li, “A progressive FE failure model for laminates under biaxial loading,” Mech. Compos. Mater., 56, 207-214 (2020).CrossRef
Metadata
Title
Design Method of Reinforcement Structure with Symmetric Pairs of Layers by the Example of Composite Gas Tank
Authors
A. N. Polilov
O. Yu. Sklemina
N. A. Tatus’
Publication date
26-01-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-09998-x

Other articles of this Issue 6/2022

Mechanics of Composite Materials 6/2022 Go to the issue

Premium Partners