Skip to main content
Top
Published in: Wireless Networks 2/2020

13-12-2019

Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications

Authors: Saeed Roshani, Sobhan Roshani

Published in: Wireless Networks | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a miniaturized low pass filter (LPF) with 2.5 GHz cut-off frequency and a novel compact, harmonics suppressed Wilkinson power divider (WPD) at 0.7 GHz is proposed. The proposed divider consists of two multi-stub LPFs and three open stubs at each port. The presented open stub at port one suppresses the second harmonic and other two open stubs at output ports, suppress the third harmonic. To suppress high order harmonics a novel 12 sections LPF based on aperiodic stub is proposed. This filter is designed to suppressed 4th to 15th harmonics. The cut off frequency of applied filter is 2.5 GHz, which creates 12 transmission zeros and suppresses corresponding 4th–15th harmonics of the proposed divider. The proposed WPD not only has perfect harmonics suppression, but also extremely decreases the circuit size. The overall size of the fabricated divider is only 0.116 λg × 0.044 λg, which shows more than 73% size reductions, compared to the 0.7 GHz conventional WPD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng, K. K., & Ip, W. C. (2010). A novel power divider design with enhanced spurious suppression and simple structure. IEEE Transactions on Microwave Theory and Techniques,58(12), 3903–3908. Cheng, K. K., & Ip, W. C. (2010). A novel power divider design with enhanced spurious suppression and simple structure. IEEE Transactions on Microwave Theory and Techniques,58(12), 3903–3908.
2.
go back to reference Hayati, M., Roshani, S., Roshani, S., & Shama, F. (2013). A novel miniaturized Wilkinson power divider with n th harmonic suppression. Journal of Electromagnetic Waves and Applications,27(6), 726–735.CrossRef Hayati, M., Roshani, S., Roshani, S., & Shama, F. (2013). A novel miniaturized Wilkinson power divider with n th harmonic suppression. Journal of Electromagnetic Waves and Applications,27(6), 726–735.CrossRef
3.
go back to reference Roshani, S., Siahkamari, P., & Siahkamari, H. (2017). Compact, harmonic suppressed Gysel power divider with plain structure. Frequenz.,71(5–6), 221–226. Roshani, S., Siahkamari, P., & Siahkamari, H. (2017). Compact, harmonic suppressed Gysel power divider with plain structure. Frequenz.,71(5–6), 221–226.
6.
go back to reference Hayati, M., Roshani, S., & Roshani, S. (2013). Miniaturized Wilkinson power divider with nth harmonic suppression using front coupled tapered CMRC. ACES,28(3), 221–227. Hayati, M., Roshani, S., & Roshani, S. (2013). Miniaturized Wilkinson power divider with nth harmonic suppression using front coupled tapered CMRC. ACES,28(3), 221–227.
7.
go back to reference Heshmati, H., & Roshani, S. (2018). A miniaturized lowpass bandpass diplexer with high isolation. AEU-International Journal of Electronics and Communications,87, 87–94.CrossRef Heshmati, H., & Roshani, S. (2018). A miniaturized lowpass bandpass diplexer with high isolation. AEU-International Journal of Electronics and Communications,87, 87–94.CrossRef
8.
go back to reference Rostami, P., & Roshani, S. (2018). A miniaturized dual band Wilkinson power divider using capacitor loaded transmission lines. AEU-International Journal of Electronics and Communications,90, 63–68.CrossRef Rostami, P., & Roshani, S. (2018). A miniaturized dual band Wilkinson power divider using capacitor loaded transmission lines. AEU-International Journal of Electronics and Communications,90, 63–68.CrossRef
9.
go back to reference Zhuang, Z., Wu, Y., & Liu, Y. (2017). Dual-band filtering out-of-phase balanced-to-single-ended power divider with enhanced bandwidth. AEU-International Journal of Electronics and Communications,82, 341–345.CrossRef Zhuang, Z., Wu, Y., & Liu, Y. (2017). Dual-band filtering out-of-phase balanced-to-single-ended power divider with enhanced bandwidth. AEU-International Journal of Electronics and Communications,82, 341–345.CrossRef
10.
go back to reference Wang, X., Sakagami, I., Ma, Z., Mase, A., & Yoshikawa, M. (2015). Generalized, miniaturized, dual-band Wilkinson power divider with a parallel RLC circuit. AEU-International Journal of Electronics and Communications,69(1), 418–423.CrossRef Wang, X., Sakagami, I., Ma, Z., Mase, A., & Yoshikawa, M. (2015). Generalized, miniaturized, dual-band Wilkinson power divider with a parallel RLC circuit. AEU-International Journal of Electronics and Communications,69(1), 418–423.CrossRef
11.
go back to reference Lin, C. M., Su, H. H., Chiu, J. C., & Wang, Y. H. (2007). Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters,17(10), 700–702.CrossRef Lin, C. M., Su, H. H., Chiu, J. C., & Wang, Y. H. (2007). Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters,17(10), 700–702.CrossRef
12.
go back to reference Zhang, F., & Li, C. F. (2008). Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection. Electronics Letters,44(6), 422–424.CrossRef Zhang, F., & Li, C. F. (2008). Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection. Electronics Letters,44(6), 422–424.CrossRef
13.
go back to reference Woo, D. J., & Lee, T. K. (2005). Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques,53(6), 2139–2144.CrossRef Woo, D. J., & Lee, T. K. (2005). Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques,53(6), 2139–2144.CrossRef
14.
go back to reference Kazerooni, M., & Fartookzadeh, M. (2013). Design of a Two Octave Gysel power-divider using DGS and DMS. Journal of Communication Engineering,2(2), 73–88. Kazerooni, M., & Fartookzadeh, M. (2013). Design of a Two Octave Gysel power-divider using DGS and DMS. Journal of Communication Engineering,2(2), 73–88.
15.
go back to reference Huang, W., Liu, C., Yan, L., & Huang, K. (2010). A miniaturized dual-band power divider with harmonic suppression for GSM applications. Journal of Electromagnetic Waves and Applications,24(1), 81–91.CrossRef Huang, W., Liu, C., Yan, L., & Huang, K. (2010). A miniaturized dual-band power divider with harmonic suppression for GSM applications. Journal of Electromagnetic Waves and Applications,24(1), 81–91.CrossRef
16.
go back to reference Gao, S. S., Sun, S., & Xiao, S. (2013). A novel wideband bandpass power divider with harmonic-suppressed ring resonator. IEEE Microwave and Wireless Components Letters,23(3), 119–121.CrossRef Gao, S. S., Sun, S., & Xiao, S. (2013). A novel wideband bandpass power divider with harmonic-suppressed ring resonator. IEEE Microwave and Wireless Components Letters,23(3), 119–121.CrossRef
17.
go back to reference Song, K. (2015). Compact filtering power divider with high frequency selectivity and wide stopband using embedded dual-mode resonator. Electronics Letters,51(6), 495–497.CrossRef Song, K. (2015). Compact filtering power divider with high frequency selectivity and wide stopband using embedded dual-mode resonator. Electronics Letters,51(6), 495–497.CrossRef
18.
go back to reference Song, K., Ren, X., Chen, F., & Fan, Y. (2013). Compact in-phase power divider integrated filtering response using spiral resonator. IET Microwaves, Antennas and Propagation,8(4), 228–234. Song, K., Ren, X., Chen, F., & Fan, Y. (2013). Compact in-phase power divider integrated filtering response using spiral resonator. IET Microwaves, Antennas and Propagation,8(4), 228–234.
19.
go back to reference Ren, X., Song, K., Hu, B., & Chen, Q. (2014). Compact filtering power divider with good frequency selectivity and wide stopband based on composite right-/left-handed transmission lines. Microwave and Optical Technology Letters,56(9), 2122–2125.CrossRef Ren, X., Song, K., Hu, B., & Chen, Q. (2014). Compact filtering power divider with good frequency selectivity and wide stopband based on composite right-/left-handed transmission lines. Microwave and Optical Technology Letters,56(9), 2122–2125.CrossRef
20.
go back to reference Liu, H., Liu, C., Dai, X., & He, S. (2016). Design of novel compact dual-band filtering power divider using stepped-impedance resonators with high selectivity. International Journal of RF and Microwave Computer-Aided Engineering,26(3), 262–267.CrossRef Liu, H., Liu, C., Dai, X., & He, S. (2016). Design of novel compact dual-band filtering power divider using stepped-impedance resonators with high selectivity. International Journal of RF and Microwave Computer-Aided Engineering,26(3), 262–267.CrossRef
21.
go back to reference Li, X., Shao, Z., Shen, M., & He, Z. (2016). High selectivity tunable filtering power divider based on liquid crystal technology for microwave applications. Journal of Electromagnetic Waves and Applications,30(7), 825–833.CrossRef Li, X., Shao, Z., Shen, M., & He, Z. (2016). High selectivity tunable filtering power divider based on liquid crystal technology for microwave applications. Journal of Electromagnetic Waves and Applications,30(7), 825–833.CrossRef
22.
go back to reference Wang, X., Ohira, M., & Ma, Z. (2016). Coupled microstrip line Wilkinson power divider with open-stubs for compensation. Electronics Letters,52(15), 1314–1316.CrossRef Wang, X., Ohira, M., & Ma, Z. (2016). Coupled microstrip line Wilkinson power divider with open-stubs for compensation. Electronics Letters,52(15), 1314–1316.CrossRef
23.
go back to reference Chen, C. J. (2014). Design of artificial transmission line and low-pass filter based on aperiodic stubs on a microstrip line. IEEE Transactions on Components, Packaging and Manufacturing Technology,4(5), 922–928.CrossRef Chen, C. J. (2014). Design of artificial transmission line and low-pass filter based on aperiodic stubs on a microstrip line. IEEE Transactions on Components, Packaging and Manufacturing Technology,4(5), 922–928.CrossRef
24.
go back to reference Pozar, D. M. (2011). Microwave engineering. New York: Wiley. Pozar, D. M. (2011). Microwave engineering. New York: Wiley.
25.
go back to reference Wang, J., Ni, J., Guo, Y. X., & Fang, D. (2009). Miniaturized microstrip Wilkinson power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters,19(7), 440–442.CrossRef Wang, J., Ni, J., Guo, Y. X., & Fang, D. (2009). Miniaturized microstrip Wilkinson power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters,19(7), 440–442.CrossRef
26.
go back to reference Moradi, E., Moznebi, A. R., Afrooz, K., & Movahhedi, M. (2018). Gysel power divider with efficient second and third harmonic suppression using one resistor. AEU-International Journal of Electronics and Communications,89, 116–122.CrossRef Moradi, E., Moznebi, A. R., Afrooz, K., & Movahhedi, M. (2018). Gysel power divider with efficient second and third harmonic suppression using one resistor. AEU-International Journal of Electronics and Communications,89, 116–122.CrossRef
27.
go back to reference Shahi, H., & Shamsi, H. (2017). Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios. AEU-International Journal of Electronics and Communications,79, 16–25.CrossRef Shahi, H., & Shamsi, H. (2017). Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios. AEU-International Journal of Electronics and Communications,79, 16–25.CrossRef
28.
go back to reference Chen, C. J., Sung, C. H., & Su, Y. D. (2015). A multi-stub lowpass filter. IEEE Microwave and Wireless Components Letters,25(8), 532–534.CrossRef Chen, C. J., Sung, C. H., & Su, Y. D. (2015). A multi-stub lowpass filter. IEEE Microwave and Wireless Components Letters,25(8), 532–534.CrossRef
29.
go back to reference Rezaei, A., Noori, L., & Mohammadi, H. (2019). Miniaturized quad-channel microstrip diplexer with low insertion loss and wide stopband for multi-service wireless communication systems. Wireless Networks,25(6), 2989–2996.CrossRef Rezaei, A., Noori, L., & Mohammadi, H. (2019). Miniaturized quad-channel microstrip diplexer with low insertion loss and wide stopband for multi-service wireless communication systems. Wireless Networks,25(6), 2989–2996.CrossRef
31.
go back to reference Hikmaturokhman, A., Ramli, K., & Suryanegara, M. (2018). Spectrum Considerations for 5G in Indonesia. In IEEE International Conference on ICT for Rural Development (IC-ICTRuDev) (pp. 23–28). Hikmaturokhman, A., Ramli, K., & Suryanegara, M. (2018). Spectrum Considerations for 5G in Indonesia. In IEEE International Conference on ICT for Rural Development (IC-ICTRuDev) (pp. 23–28).
32.
go back to reference Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access,6, 199–208.CrossRef Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access,6, 199–208.CrossRef
33.
go back to reference Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication,25, 539–545.CrossRef Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication,25, 539–545.CrossRef
35.
go back to reference Ji, B., Song, K., Zhu, J., & Li, W. (2014). Efficient MAC protocol design and performance analysis for dense WLANs. Wireless Networks,20(8), 2237–2254.CrossRef Ji, B., Song, K., Zhu, J., & Li, W. (2014). Efficient MAC protocol design and performance analysis for dense WLANs. Wireless Networks,20(8), 2237–2254.CrossRef
36.
go back to reference Ji, B., Zhu, J., Song, K., Huang, Y., & Yang, L. (2014). Performance analysis of femtocells network with co-channel interference. Signal Processing,100, 32–41.CrossRef Ji, B., Zhu, J., Song, K., Huang, Y., & Yang, L. (2014). Performance analysis of femtocells network with co-channel interference. Signal Processing,100, 32–41.CrossRef
Metadata
Title
Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications
Authors
Saeed Roshani
Sobhan Roshani
Publication date
13-12-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02214-0

Other articles of this Issue 2/2020

Wireless Networks 2/2020 Go to the issue