Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-11-2019 | Original Research Paper | Issue 2/2020

Intelligent Service Robotics 2/2020

Design of a robust adaptive sliding mode control using recurrent fuzzy wavelet functional link neural networks for industrial robot manipulator with dead zone

Journal:
Intelligent Service Robotics > Issue 2/2020
Authors:
Nguyen Xuan Quynh, Wang Yao Nan, Vu Thi Yen
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper addresses the problem of trajectory tracking control for industrial robot manipulators (IRMs) in the presence of external disturbances and uncertain dynamics. A novel robust adaptive recurrent fuzzy wavelet functional link neural network (RFWFLNN) controller based on dead-zone compensator is proposed in order to improve the position tracking performance. To handle the unknown dynamics of the IRMs, the robust adaptive RFWFLNNs are applied to approximate the unknown dynamics. The online learning laws and estimation of the dead zone are determined by using Lyapunov stability theory and the approximation theory. In addition, the robust SMC is applied to eliminate the estimation errors and disturbances of the IRM control system. Therefore, the RFWFLNN controller for IRMs can guarantee not only the robustness and stability but also the position tracking performance. Some simulations and experiments performed on three-link IRMs are provided to prove the robustness and effectiveness of the RFWFLNNs. The superiority of the RFWFLNN controller is also demonstrated based on comparisons with fuzzy wavelet neural networks and PID controllers.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Intelligent Service Robotics 2/2020 Go to the issue

Editorial

Editorial