Skip to main content
Top

2023 | OriginalPaper | Chapter

53. Design of Artificial Intelligence-Based Products: Barriers and Enablers

Authors : Santosh Jagtap, Prashant Goswami

Published in: Design in the Era of Industry 4.0, Volume 3

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial Intelligence (AI) embodied products are becoming ubiquitous in the modern world. Organizations are hence updating themselves to design and develop such products. In this paper, we aim at identifying enablers and barriers in designing such products across several sectors. Our analysis of a broad range of literature in this field allowed us to identify these enablers and barriers. We have developed SOTCUT and SEECUT models representing these enablers and barriers. We have discussed implication of the findings for the practice of designing AI-embodied products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)CrossRef Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)CrossRef
2.
go back to reference Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 1(89), 80–91 (2019)CrossRef Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 1(89), 80–91 (2019)CrossRef
3.
go back to reference Balthazar, P., Harri, P., Prater, A., Safdar, N.M.: Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J. Am. Coll. Radiol. 15(3), 580–586 (2018)CrossRef Balthazar, P., Harri, P., Prater, A., Safdar, N.M.: Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J. Am. Coll. Radiol. 15(3), 580–586 (2018)CrossRef
4.
go back to reference Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care’ addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018)CrossRef Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care’ addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018)CrossRef
5.
go back to reference Crawford, K., Whittaker, M., Elish, M.C., Barocas, S., Plasek, A., Ferryman, K.: The AI now report. In: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, 2016 Crawford, K., Whittaker, M., Elish, M.C., Barocas, S., Plasek, A., Ferryman, K.: The AI now report. In: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, 2016
6.
go back to reference Cross, N.: Engineering Design Methods: Strategies for Product Design. John Wiley & Sons (2021) Cross, N.: Engineering Design Methods: Strategies for Product Design. John Wiley & Sons (2021)
7.
8.
go back to reference Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 1(48), 63–71 (2019)CrossRef Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 1(48), 63–71 (2019)CrossRef
9.
go back to reference Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 101994 (2019) Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 101994 (2019)
10.
go back to reference Edwards, J.S., Duan, Y., Robins, P.: An analysis of expert systems for business decision making at different levels and in different roles. Eur. J. Inf. Syst. 9(1), 36–46 (2000)CrossRef Edwards, J.S., Duan, Y., Robins, P.: An analysis of expert systems for business decision making at different levels and in different roles. Eur. J. Inf. Syst. 9(1), 36–46 (2000)CrossRef
11.
go back to reference Eppinger, S., Ulrich, K.: Product Design and Development. McGraw-Hill Higher Education (2015) Eppinger, S., Ulrich, K.: Product Design and Development. McGraw-Hill Higher Education (2015)
12.
go back to reference Fry, H.: Hello World: How to be Human in the Age of the Machine. Transworld Publishers, London, UK (2018) Fry, H.: Hello World: How to be Human in the Age of the Machine. Transworld Publishers, London, UK (2018)
13.
go back to reference Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 1(69), S36-40 (2017)CrossRef Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 1(69), S36-40 (2017)CrossRef
14.
go back to reference Jha, S.K., Bilalovic, J., Jha, A., Patel, N., Zhang, H.: Renewable energy: present research and future scope of artificial intelligence. Renew. Sustain. Energy Rev. 77, 297–317 (2017)CrossRef Jha, S.K., Bilalovic, J., Jha, A., Patel, N., Zhang, H.: Renewable energy: present research and future scope of artificial intelligence. Renew. Sustain. Energy Rev. 77, 297–317 (2017)CrossRef
15.
go back to reference Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62(1), 15–25 (2019)CrossRef Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62(1), 15–25 (2019)CrossRef
16.
go back to reference Li, B.H., Hou, B.C., Yu, W.T., Lu, X.B., Yang, C.W.: Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf. Technol. Electronic Eng. 18(1), 86–96 (2017)CrossRef Li, B.H., Hou, B.C., Yu, W.T., Lu, X.B., Yang, C.W.: Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf. Technol. Electronic Eng. 18(1), 86–96 (2017)CrossRef
17.
go back to reference Mikhaylov, S.J., Esteve, M., Campion, A.: Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 376(2128) (2018) Mikhaylov, S.J., Esteve, M., Campion, A.: Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 376(2128) (2018)
18.
19.
go back to reference Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019)CrossRef Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019)CrossRef
20.
go back to reference Nishant, R., Kennedy, M., Corbett, J.: Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int. J. Inf. Manage. 1(53), 102104 (2020)CrossRef Nishant, R., Kennedy, M., Corbett, J.: Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int. J. Inf. Manage. 1(53), 102104 (2020)CrossRef
21.
go back to reference Parveen, R.: Artificial intelligence in construction industry: legal issues and regulatory challenges. Int. J. Civil Eng. Technol. 9(13), 957–962 (2018) Parveen, R.: Artificial intelligence in construction industry: legal issues and regulatory challenges. Int. J. Civil Eng. Technol. 9(13), 957–962 (2018)
22.
go back to reference Pinto dos Santos, D., Giese, D., Brodehl, S., et al.: Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur. Radiol. 29(4), 1640–1646 (2019)CrossRef Pinto dos Santos, D., Giese, D., Brodehl, S., et al.: Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur. Radiol. 29(4), 1640–1646 (2019)CrossRef
23.
go back to reference Recht, M.P., Dewey, M., Dreyer, K., Curtis, L., Wiro, N., Prainsack, B., Smith, J.J.: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30(6), 3576–3584 (2020)CrossRef Recht, M.P., Dewey, M., Dreyer, K., Curtis, L., Wiro, N., Prainsack, B., Smith, J.J.: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30(6), 3576–3584 (2020)CrossRef
24.
go back to reference Rosenholm, L., Goswami, P., Jagtap, S.: Design of (semi-)autonomous vehicles: perceptions of the people in Sweden. Proc. Des. Soc. 2, 1719–1726 (2022) Rosenholm, L., Goswami, P., Jagtap, S.: Design of (semi-)autonomous vehicles: perceptions of the people in Sweden. Proc. Des. Soc. 2, 1719–1726 (2022)
25.
go back to reference Rubin, D.L.: Artificial intelligence in imaging: the radiologist’s role. J. Am. Coll. Radiol. 16(9), 1309–1317 (2019)CrossRef Rubin, D.L.: Artificial intelligence in imaging: the radiologist’s role. J. Am. Coll. Radiol. 16(9), 1309–1317 (2019)CrossRef
26.
go back to reference Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Global Edition 4th. Foundations, 19, 23 (2021) Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Global Edition 4th. Foundations, 19, 23 (2021)
27.
go back to reference Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Info Tech. 27(2), 171–203 (2019) Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Info Tech. 27(2), 171–203 (2019)
28.
go back to reference Strohm, L., Hehakaya, C., Ranschaert, E.R., Boon, W.P., Moors, E.H.: Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur. Radiol. 30, 5525–5532 (2020)CrossRef Strohm, L., Hehakaya, C., Ranschaert, E.R., Boon, W.P., Moors, E.H.: Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur. Radiol. 30, 5525–5532 (2020)CrossRef
29.
go back to reference Tajmir, S.H., Alkasab, T.K.: Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad. Radiol. 25(6), 747–750 (2018)CrossRef Tajmir, S.H., Alkasab, T.K.: Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad. Radiol. 25(6), 747–750 (2018)CrossRef
30.
go back to reference Waltz, D.L.: Artificial Intelligence: realizing the ultimate promises of computing. AI Mag. 18(3):49- (1997) Waltz, D.L.: Artificial Intelligence: realizing the ultimate promises of computing. AI Mag. 18(3):49- (1997)
31.
go back to reference Wei, L.: AI-Design: architectural intelligent design approaches based on AI. In: DEStech Transactions on Engineering and Technology Research ICAEN (2018) Wei, L.: AI-Design: architectural intelligent design approaches based on AI. In: DEStech Transactions on Engineering and Technology Research ICAEN (2018)
32.
go back to reference Wood, M.J., Teneholtz, N.A., Geis, J.R., Michalski, M.H., Andriole, K.P.: The need for a machine learning curriculum for radiologists. J. Am. Coll. Radiol. 16(5), 740–742 (2019)CrossRef Wood, M.J., Teneholtz, N.A., Geis, J.R., Michalski, M.H., Andriole, K.P.: The need for a machine learning curriculum for radiologists. J. Am. Coll. Radiol. 16(5), 740–742 (2019)CrossRef
33.
go back to reference Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 15(11), 1002683 (2018) Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 15(11), 1002683 (2018)
Metadata
Title
Design of Artificial Intelligence-Based Products: Barriers and Enablers
Authors
Santosh Jagtap
Prashant Goswami
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0428-0_53

Premium Partners