Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2023

26-04-2023

Design of Composites Using Failure-Mode-Concept-Based Tools — from Failure Model Validation to Design Verification

Author: R. Cuntze

Published in: Mechanics of Composite Materials | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Novel simulation-driven product development shifts the role of physical testing to virtual testing. This requires High Fidelity concerning material models such as strength failure conditions (SFCs) (strength criteria). Usual assumption for the material model is an ideally homogeneous, usually homogenized solid material. Following Beltrami and Mohr–Coulomb the material element may experience — related to different energy portions — a shape change, a volume change, and friction, and these features can be linked to invariants, which is of great advantage when developing strength criteria. Based on this, the author derived SFCs for a large variety of isotropic brittle structural materials such as plexiglass, porous concrete stone, cast iron, Normal Concrete, UHPC, sandstone, mild steels, foam, monolithic ceramics, further for different transversely-isotropic fiber-reinforced dense and porous polymer UD Laminas (plies, lamellas) and for orthotropic Fabrics such as ceramics. Beside the uniaxial strengths, available multiaxial fracture test data for the materials above-mentioned had to be investigated because in the case of brittle materials these are required to really achieve a 3D-validation of the respective SFC material model. During the development of the Failure Mode Concept FMC, a closer look at material symmetry facts was taken whereby the question arose in the case of ideally homogeneous materials: Is there a ‘generic’ number natural to a material? Namely, Material Symmetry seems to confirm for isotropic materials that this is valid for elastic entities, yield modes and strength fracture modes, for fracture strengths Rt with Rc, fracture toughness entities KIc\({\mathrm{K}}_{\mathrm{cr}}^{\mathrm{t}}\) with \({\mathrm{K}}_{\mathrm{cr}}^{\mathrm{c}}\) and also for the ‘basic’ invariants used to generate SFCs, which usually represent failure, just for the case where the failure mode occurs once. The author concluded from Material symmetry and behavior: (1) ‘Generic Numbers’ exist with a number 2 for isotropic and 5 for UD materials. (2) Different but similar behaving materials can be basically treated with the same SFC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Cuntze, “Life-Work Cuntze - a compilation,” > 750 pages, Draft December 2022, permanent downloading address from January 2023 on: Carbon Connected | Prof. Ralf Cuntze (carbon-connected.de) R. Cuntze, “Life-Work Cuntze - a compilation,” > 750 pages, Draft December 2022, permanent downloading address from January 2023 on: Carbon Connected | Prof. Ralf Cuntze (carbon-connected.de)
2.
go back to reference R. Cuntze, “Application of 3D-strength criteria, based on the so-called “Failure Mode Concept”, to multi-axial test data of sandwich foam, concrete, epoxy, CFRP-UD lamina, CMC-Fabric Lamina,” ICCE/5, Las Vegas, July 1998 (presentation). R. Cuntze, “Application of 3D-strength criteria, based on the so-called “Failure Mode Concept”, to multi-axial test data of sandwich foam, concrete, epoxy, CFRP-UD lamina, CMC-Fabric Lamina,” ICCE/5, Las Vegas, July 1998 (presentation).
3.
go back to reference R. Cuntze, “Failure conditions for isotropic materials, unidirectional composites, woven fabrics - their visualization and links,” https://www.ndt.net › cdcm2006 › papers › Cuntze, PDF. R. Cuntze, “Failure conditions for isotropic materials, unidirectional composites, woven fabrics - their visualization and links,” https://​www.​ndt.​net › cdcm2006 › papers › Cuntze, PDF.
4.
go back to reference R. M. Christensen, “The numbers of elastic properties and failure parameters for fiber composites,” Transactions of the ASME, 120, 110-113 (1998). R. M. Christensen, “The numbers of elastic properties and failure parameters for fiber composites,” Transactions of the ASME, 120, 110-113 (1998).
5.
go back to reference S. W. Tsai and E. M., “A general theory of strength for an-isotropic materials,” J. Comp. Mater., 5, 58-80 (1971). S. W. Tsai and E. M., “A general theory of strength for an-isotropic materials,” J. Comp. Mater., 5, 58-80 (1971).
6.
go back to reference R. Cuntze, R. Deska, B. Szelinski, R. Jeltsch-Fricker, S. Meckbach, D. Huybrechts, J. Kopp, L. Kroll, S. Gollwitzer, and R. Rackwitz, New Fracture Criteria — Hashin-Puck Action Plane Criteria — and Strength Design Verifications’ for Unidirectional FRPs Subjected to Multi-axial States of Stress – Model Development and Experiments. [in German] VDI-Fortschrittbericht, Reihe 5, Nr. 506 (1997). R. Cuntze, R. Deska, B. Szelinski, R. Jeltsch-Fricker, S. Meckbach, D. Huybrechts, J. Kopp, L. Kroll, S. Gollwitzer, and R. Rackwitz, New Fracture Criteria — Hashin-Puck Action Plane Criteria — and Strength Design Verifications’ for Unidirectional FRPs Subjected to Multi-axial States of Stress – Model Development and Experiments. [in German] VDI-Fortschrittbericht, Reihe 5, Nr. 506 (1997).
7.
go back to reference German Guideline, Sheet 3, Development of Fibre-Reinforced Plastic Components, Analysis, Beuth-Verlag, 2006 (in German and English, author was convenor and co-author). German Guideline, Sheet 3, Development of Fibre-Reinforced Plastic Components, Analysis, Beuth-Verlag, 2006 (in German and English, author was convenor and co-author).
8.
go back to reference R. Cuntze, “Comparison between experimental and theoretical results using cuntze’s failure mode concept model for composites under tri-axial loadings — Part B of the WWFE-II.,” J. Compos. Mater., 47, 893-924 (2013).CrossRef R. Cuntze, “Comparison between experimental and theoretical results using cuntze’s failure mode concept model for composites under tri-axial loadings — Part B of the WWFE-II.,” J. Compos. Mater., 47, 893-924 (2013).CrossRef
9.
go back to reference A. Puck, Festigkeitsanalyse von Faser-Matrix-Laminaten - Modelle für die Praxis, München, Carl Hanser Verlag (1996). A. Puck, Festigkeitsanalyse von Faser-Matrix-Laminaten - Modelle für die Praxis, München, Carl Hanser Verlag (1996).
10.
go back to reference R. Cuntze, “Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design,” Compos. Sci. and Technol., 66, 1081-1096 (2006).CrossRef R. Cuntze, “Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design,” Compos. Sci. and Technol., 66, 1081-1096 (2006).CrossRef
11.
go back to reference R. Cuntze, “Strength failure conditions of the various structural materials: is there some common basis existing?”, SDHM, 74, No.1, 1-19 (2008). R. Cuntze, “Strength failure conditions of the various structural materials: is there some common basis existing?”, SDHM, 74, No.1, 1-19 (2008).
12.
go back to reference R. Cuntze, “The predictive capability of failure mode concept-based strength conditions for laminates composed of UD laminas under static tri-axial stress states, WFE-II, Part A,” J. Compos. Mater., 46, 2563-2594 (2012).CrossRef R. Cuntze, “The predictive capability of failure mode concept-based strength conditions for laminates composed of UD laminas under static tri-axial stress states, WFE-II, Part A,” J. Compos. Mater., 46, 2563-2594 (2012).CrossRef
13.
go back to reference H. Awaji and S. Sato, “A Statistical theory for the fracture of brittle solids under multiaxial stresses,” Int. J. Fracture, 14, 13-16 (1978).CrossRef H. Awaji and S. Sato, “A Statistical theory for the fracture of brittle solids under multiaxial stresses,” Int. J. Fracture, 14, 13-16 (1978).CrossRef
14.
go back to reference J. P. Boehler, “Introduction to the invariant formulation of anisotropic constitutive equations,” In: J. P. Boehler (Ed.) Applications of Tensor Functions in Solid Mechanics”, CISM Course No. 292, Springer-Verlag (1987). In addition a personal note from J. Boehler on UD-invariants which were later applied by the author in his FMC. J. P. Boehler, “Introduction to the invariant formulation of anisotropic constitutive equations,” In: J. P. Boehler (Ed.) Applications of Tensor Functions in Solid Mechanics”, CISM Course No. 292, Springer-Verlag (1987). In addition a personal note from J. Boehler on UD-invariants which were later applied by the author in his FMC.
15.
go back to reference E. Petersen, R. Cuntze, and C. Huehne, “Experimental determination of material parameters in Cuntze’s failure-modeconcept-based UD strength failure conditions”, Compos. Sci. and Technol., 134, 12-25 (2016).CrossRef E. Petersen, R. Cuntze, and C. Huehne, “Experimental determination of material parameters in Cuntze’s failure-modeconcept-based UD strength failure conditions”, Compos. Sci. and Technol., 134, 12-25 (2016).CrossRef
16.
go back to reference R. Cuntze, “The Predictive capability of failure mode concept-based strength criteria for multidirectional laminates, Part B,” Compos. Sci. and Technol., 63, 487-516 (2004).CrossRef R. Cuntze, “The Predictive capability of failure mode concept-based strength criteria for multidirectional laminates, Part B,” Compos. Sci. and Technol., 63, 487-516 (2004).CrossRef
17.
go back to reference R. Cuntze, “Fracture failure bodies of porous concrete (foam-like), normal concrete, ultra-high-performance-concrete and of the lamella — generated on basis of Cuntze’s failure-mode-concept (FMC),” NWC2017, June 11-14, NAFEMS, Stockholm (2017). R. Cuntze, “Fracture failure bodies of porous concrete (foam-like), normal concrete, ultra-high-performance-concrete and of the lamella — generated on basis of Cuntze’s failure-mode-concept (FMC),” NWC2017, June 11-14, NAFEMS, Stockholm (2017).
18.
go back to reference M. J. Hinton, A. S. Kaddour, and P. D. Soden,” A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence,” Compos. Sci. and Technol., 62, 1725-97 (2002). M. J. Hinton, A. S. Kaddour, and P. D. Soden,” A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence,” Compos. Sci. and Technol., 62, 1725-97 (2002).
19.
go back to reference A. S. Kaddour and M. Hinton, “Maturity of 3D failure criteria for fiber-reinforced composites: Comparison between theories and experiments, Part B of WWFE-II,” J. Compos. Mater. 47, Nos. 6-7, 925–966 (2013).CrossRef A. S. Kaddour and M. Hinton, “Maturity of 3D failure criteria for fiber-reinforced composites: Comparison between theories and experiments, Part B of WWFE-II,” J. Compos. Mater. 47, Nos. 6-7, 925–966 (2013).CrossRef
20.
go back to reference R. Birch, “The Effect of pressure upon the elastic parameters of isotropic solids, according to Murnaaghan’s theory of finite strains,” J. Appl. Physics, 9, No. 4, 279-288 (1938).CrossRef R. Birch, “The Effect of pressure upon the elastic parameters of isotropic solids, according to Murnaaghan’s theory of finite strains,” J. Appl. Physics, 9, No. 4, 279-288 (1938).CrossRef
21.
go back to reference M. Kawai, “A phenomenological model for off-axis fatigue behaviour of uni-directional polymer matrix composites under different stress ratios,” Compos., Part A, 35, 955-963 (2004).CrossRef M. Kawai, “A phenomenological model for off-axis fatigue behaviour of uni-directional polymer matrix composites under different stress ratios,” Compos., Part A, 35, 955-963 (2004).CrossRef
22.
go back to reference Hahne C, Zur Festigkeitsbewertung von Strukturbauteilen aus Kohlenstofffaser-Kunststoff-Verbunden unter PKWBetriebslasten, Shaker Verlag, Dissertation 2015, TU-Darmstadt, Schriftenreihe Konstruktiver Leichtbau mit Faser-Kunststoff-Verbunden, Herausgeber Prof. Dr.-Ing Helmut Schürmann (2015). Hahne C, Zur Festigkeitsbewertung von Strukturbauteilen aus Kohlenstofffaser-Kunststoff-Verbunden unter PKWBetriebslasten, Shaker Verlag, Dissertation 2015, TU-Darmstadt, Schriftenreihe Konstruktiver Leichtbau mit Faser-Kunststoff-Verbunden, Herausgeber Prof. Dr.-Ing Helmut Schürmann (2015).
23.
go back to reference A. Puck and H. Schuermann,” Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. and Technol., 62, 1633-1662 (2002). A. Puck and H. Schuermann,” Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. and Technol., 62, 1633-1662 (2002).
Metadata
Title
Design of Composites Using Failure-Mode-Concept-Based Tools — from Failure Model Validation to Design Verification
Author
R. Cuntze
Publication date
26-04-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10095-w

Other articles of this Issue 2/2023

Mechanics of Composite Materials 2/2023 Go to the issue

Premium Partners