Skip to main content
Top

2016 | OriginalPaper | Chapter

Design of Self-generating Component Powered by Magnetic Energy Harvesting—Magnetic Field Alarm

Authors : K. Tashiro, A. Ikegami, S. Shimada, H. Kojima, H. Wakiwaka

Published in: Next Generation Sensors and Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A design of self-generating component powered by magnetic energy harvesting is presented. In order to demonstrate the devices, a magnetic field alarm is developed. It consists of an energy harvesting module, Cockcroft-Walton circuit and piezo buzzer. The energy harvesting module is composed of coil and magnetic flux concentration core. It can generate 200 µW from an environmental magnetic field of 200 µT at 60 Hz. The Cockcroft-Walton circuit can converts the AC voltage to a suitable DC voltage for the piezo buzzer. This alarm can notice not only the magnetic field level defined by ICNIRP2010 but also the existence of magnetic field energy to be harvested. For the further developments, theoretical estimations for harvesting energy, effective permeability and optimum load condition are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Tashiro, H. Wakiwaka, S. Inoue, Y. Uchiyama, Energy Harvesting of Magnetic Power-Line Noise. IEEE Trans. Magn. 47, 4441–4444 (2011)CrossRef K. Tashiro, H. Wakiwaka, S. Inoue, Y. Uchiyama, Energy Harvesting of Magnetic Power-Line Noise. IEEE Trans. Magn. 47, 4441–4444 (2011)CrossRef
2.
go back to reference S. Takahashi, N. Yoshida, K. Maruhashi M. Fukaishi, Real-time current-waveform sensor with plugless energy harvesting from AC power lines for home/building energy-management systems, in 2011 IEEE International Solid-State Circuits Conference (2011), pp. 220–222 S. Takahashi, N. Yoshida, K. Maruhashi M. Fukaishi, Real-time current-waveform sensor with plugless energy harvesting from AC power lines for home/building energy-management systems, in 2011 IEEE International Solid-State Circuits Conference (2011), pp. 220–222
3.
go back to reference N.M. Roscoe, M.D. Judd, Harvesting enegy from magnetic fields to power condition monitoring sensors. IEEE Sens. J. 13, 2263–2270 (2013)CrossRef N.M. Roscoe, M.D. Judd, Harvesting enegy from magnetic fields to power condition monitoring sensors. IEEE Sens. J. 13, 2263–2270 (2013)CrossRef
4.
go back to reference R.J.M. Vuller, R. van Schaijk, I. Doms, C. Van Hoof, R. Merten, Micropower energy harvesting. Solid State Electron. 53, 684–693 (2009)CrossRef R.J.M. Vuller, R. van Schaijk, I. Doms, C. Van Hoof, R. Merten, Micropower energy harvesting. Solid State Electron. 53, 684–693 (2009)CrossRef
5.
go back to reference A. Harb, Energy harvesting: state-of-the-art. Renewable Energy 36, 2641–2654 (2011)CrossRef A. Harb, Energy harvesting: state-of-the-art. Renewable Energy 36, 2641–2654 (2011)CrossRef
6.
go back to reference R.J. Vyas, B.B. Cook, Y. Kawahara, M.M. Tenzeris, E-WEHP: a batteryless embedded sensor-platform wirelessly powered from ambient Digital-TV signals. IEEE Trans. Microw. Theory Tech. 41, 2491–2505 (2013)CrossRef R.J. Vyas, B.B. Cook, Y. Kawahara, M.M. Tenzeris, E-WEHP: a batteryless embedded sensor-platform wirelessly powered from ambient Digital-TV signals. IEEE Trans. Microw. Theory Tech. 41, 2491–2505 (2013)CrossRef
7.
go back to reference K. Tashiro, H. Wakiwaka, Y. Uchiyama G. Hattori, Design of AC–DC Converter for Magnetic Energy Harvesting Device. Sensing technology: current status and future trends I, smart sensors, measurement and instrumentation, vol. 7 (Springer, Dordrecht, 2014), pp. 297–308 K. Tashiro, H. Wakiwaka, Y. Uchiyama G. Hattori, Design of AC–DC Converter for Magnetic Energy Harvesting Device. Sensing technology: current status and future trends I, smart sensors, measurement and instrumentation, vol. 7 (Springer, Dordrecht, 2014), pp. 297–308
8.
go back to reference K. Tashiro, H. Wakiwaka, Y. Uchiyama, Loss measurement in power conditioning module for power-line magnetic noise energy harvesting device. J. Japan Soc. Appl. Electromagnet. Mechan. 20, 440–445 (2012) K. Tashiro, H. Wakiwaka, Y. Uchiyama, Loss measurement in power conditioning module for power-line magnetic noise energy harvesting device. J. Japan Soc. Appl. Electromagnet. Mechan. 20, 440–445 (2012)
9.
go back to reference K. Tashiro, H. Wakiwaka, Y. Uchiyama, Consideration of energy strage circuits for magnetic energy harvesting. J. Japan Soc. Appl. Electromagnet. Mech. 21, 308–313 (2013)CrossRef K. Tashiro, H. Wakiwaka, Y. Uchiyama, Consideration of energy strage circuits for magnetic energy harvesting. J. Japan Soc. Appl. Electromagnet. Mech. 21, 308–313 (2013)CrossRef
10.
go back to reference K. Tashiro, H. Wakiwaka, S. Shimada, Demonstration of magnetic energy harvesting from electrical appliances. J. Energy Power Eng. 8, 568–572 (2014) K. Tashiro, H. Wakiwaka, S. Shimada, Demonstration of magnetic energy harvesting from electrical appliances. J. Energy Power Eng. 8, 568–572 (2014)
11.
go back to reference K. Tashiro, G. Hattori, H. Wakiwaka, Magnetic flux concentration methods for magnetic energy harvesting module. EPJ Web Conf. 40, 06011 (2013)CrossRef K. Tashiro, G. Hattori, H. Wakiwaka, Magnetic flux concentration methods for magnetic energy harvesting module. EPJ Web Conf. 40, 06011 (2013)CrossRef
12.
go back to reference K. Tashiro, H. Wakiwaka, Y. Uchiyama, Theoretical design of energy harvesting module or wireless power transmission receiver using magnetic field of 0.2 mT at 60 Hz. J. Energy Power Eng. 7, 740–745 (2013) K. Tashiro, H. Wakiwaka, Y. Uchiyama, Theoretical design of energy harvesting module or wireless power transmission receiver using magnetic field of 0.2 mT at 60 Hz. J. Energy Power Eng. 7, 740–745 (2013)
13.
go back to reference ICNIRP : Guideline for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys. 99(6), 818–836 (2010) ICNIRP : Guideline for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys. 99(6), 818–836 (2010)
14.
go back to reference K. Tashiro, A. Matsuoka, H. Wakiwaka, Simple-Box-9 coil system: a novel approach to design of a square coil system for producing uniform magnetic fields. Mater. Sci. Forum 670, 275–283 (2011)CrossRef K. Tashiro, A. Matsuoka, H. Wakiwaka, Simple-Box-9 coil system: a novel approach to design of a square coil system for producing uniform magnetic fields. Mater. Sci. Forum 670, 275–283 (2011)CrossRef
15.
go back to reference F.W. Grover, Inductance Calculations, Dover Phoenix Editions (2004), pp. 94–113 F.W. Grover, Inductance Calculations, Dover Phoenix Editions (2004), pp. 94–113
16.
go back to reference J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRef J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRef
17.
go back to reference C. Coillot, J. Moutoussamy, P. Leroy, G. Chanteur, A. Roux, Improvements on the design of search coil magnetometer for space experiments. Sensor Letters 5, 167–170 (2007)CrossRef C. Coillot, J. Moutoussamy, P. Leroy, G. Chanteur, A. Roux, Improvements on the design of search coil magnetometer for space experiments. Sensor Letters 5, 167–170 (2007)CrossRef
18.
go back to reference E. Paperno, A. Grosz, A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 105, 07E708 (2009)CrossRef E. Paperno, A. Grosz, A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 105, 07E708 (2009)CrossRef
19.
go back to reference D.-X. Chen, E. Pardo, A. Sanchez, Fluxmetric and magnetometric demagnetizing factors for cylinders. J. Magn. Magn. Mater. 306, 135–146 (2006)CrossRef D.-X. Chen, E. Pardo, A. Sanchez, Fluxmetric and magnetometric demagnetizing factors for cylinders. J. Magn. Magn. Mater. 306, 135–146 (2006)CrossRef
Metadata
Title
Design of Self-generating Component Powered by Magnetic Energy Harvesting—Magnetic Field Alarm
Authors
K. Tashiro
A. Ikegami
S. Shimada
H. Kojima
H. Wakiwaka
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-21671-3_14