Skip to main content
Top

2020 | OriginalPaper | Chapter

Design of Sigma-Delta Converter Using 65 nm CMOS Technology for Nerves Organization in Brain Machine Interface

Authors : Anil Kumar Sahu, G. R. Sinha, Sapna Soni

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an overview of the present related works in the field of neuroscience is determined. The parts of the neural interface using sigma-delta converter are examined the overall ADC is driven with low voltage to improve the control utilization in the nerves organization. In this work, a basic parts of nervous system is demonstrated which is conquer to solve the problem by delivering power and transmitting data in a minimized manner. For these the above signal is first transmitted to the brain using the help of electrode into the central nervous system of the brain where the signal is diagnosed using brain computer interface by analyzing the data from analog-digital converter. Sigma-delta converter is used for visualizing low frequency signal. Major advantage of this converter is that firstly, clocking circuit need not be design and secondly, it provides good accuracy. Actually, there is no role of digital to analog converter (D/A) connected wirelessly in proposed design. A new topology based on A/D converter, which plays a wide role to minimum supply voltage, and an inactive integrator to decrease control utilization is exhibited, for empowering an in-channel advanced converter plot in a large-scale neural recording implant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Razaei M., Maghsoudlo E., Sawan M., Gosselin B.: A 110-nW in channel sigma-delta converter for large-scale neural recording implants. in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), April, pp. 5741–5744 (2016) Razaei M., Maghsoudlo E., Sawan M., Gosselin B.: A 110-nW in channel sigma-delta converter for large-scale neural recording implants. in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), April, pp. 5741–5744 (2016)
2.
go back to reference Roy, H.O.I.I.I., Kensall, D.W.: A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid-State Circuits 40(12), 2796–2804 (2005)CrossRef Roy, H.O.I.I.I., Kensall, D.W.: A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid-State Circuits 40(12), 2796–2804 (2005)CrossRef
3.
go back to reference Perelman, Y., Ginosar, R.: An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans. Biomed. Eng. 54(1), 130–137 (2007)CrossRef Perelman, Y., Ginosar, R.: An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans. Biomed. Eng. 54(1), 130–137 (2007)CrossRef
4.
go back to reference Pavan, S.: Excess loop delay compensation in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Express Briefs 55(11), 1119–1123 (2008)CrossRef Pavan, S.: Excess loop delay compensation in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Express Briefs 55(11), 1119–1123 (2008)CrossRef
5.
go back to reference Wise, K.D., Sodagar, A.M., Yao, Y., Gulari, M.N., Perlin, G.E., Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. IEEE J. Mag. 96(7), 1184–1202 (2008) Wise, K.D., Sodagar, A.M., Yao, Y., Gulari, M.N., Perlin, G.E., Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. IEEE J. Mag. 96(7), 1184–1202 (2008)
6.
go back to reference Thurgood, B.K., Warren, D.J., Ledbetter, N.M., Clark, G.A., Harrison, R.R.: A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Trans. Biomed. Circuits Syst. 3(6), 405–414 (2009)CrossRef Thurgood, B.K., Warren, D.J., Ledbetter, N.M., Clark, G.A., Harrison, R.R.: A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Trans. Biomed. Circuits Syst. 3(6), 405–414 (2009)CrossRef
7.
go back to reference Gosselin, B., Ayoub, A.E., Roy, J.F., Sawan, M., Lepore, F., Chaudhuri, A., Guitton, D.: A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3(3), 129–141 (2009)CrossRef Gosselin, B., Ayoub, A.E., Roy, J.F., Sawan, M., Lepore, F., Chaudhuri, A., Guitton, D.: A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3(3), 129–141 (2009)CrossRef
8.
go back to reference Lee, S.B., Lee, H.M., Kiani, M., Jow, U.M., Ghovanloo, M.: An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4(6), 360–371 (2010)CrossRef Lee, S.B., Lee, H.M., Kiani, M., Jow, U.M., Ghovanloo, M.: An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4(6), 360–371 (2010)CrossRef
9.
go back to reference Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P.L., Genov, R.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRef Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P.L., Genov, R.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRef
10.
go back to reference Wattanapanitch, W., Sarpeshkar, R.: A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans. Biomed. Circuits Syst. 5(6), 592–602 (2011)CrossRef Wattanapanitch, W., Sarpeshkar, R.: A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans. Biomed. Circuits Syst. 5(6), 592–602 (2011)CrossRef
11.
go back to reference Garcia, J., Rodriguez, S., Rusu, A.: A low-power CT incremental 3rd order ∑-∆ ADC for biosensor applications. IEEE Trans. Circuits Syst. 60(1), 25–36 (2012)MathSciNetCrossRef Garcia, J., Rodriguez, S., Rusu, A.: A low-power CT incremental 3rd order ∑-∆ ADC for biosensor applications. IEEE Trans. Circuits Syst. 60(1), 25–36 (2012)MathSciNetCrossRef
12.
go back to reference Yin, M., Borton, D.A., Aceros, J., Patterson, W.R., Nurmikko, A.V.: A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 115–128 (2013)CrossRef Yin, M., Borton, D.A., Aceros, J., Patterson, W.R., Nurmikko, A.V.: A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 115–128 (2013)CrossRef
13.
go back to reference Song, H., Chen, C., Lin, M.W., Li, K., Christen, J.B.: A neural rehabilitation chip with neural recording, peak detection, spike rate counter, and biphasic neural stimulator, pp. 415–419 (2014) Song, H., Chen, C., Lin, M.W., Li, K., Christen, J.B.: A neural rehabilitation chip with neural recording, peak detection, spike rate counter, and biphasic neural stimulator, pp. 415–419 (2014)
14.
go back to reference Rezaei, M., Maghsoudloo, E., Sawan, M., Gosselin, B.: A novel multichannel analog-to-time converter based on a multiplexed sigma delta converter. In: 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, pp. 1–4 (2015) Rezaei, M., Maghsoudloo, E., Sawan, M., Gosselin, B.: A novel multichannel analog-to-time converter based on a multiplexed sigma delta converter. In: 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, pp. 1–4 (2015)
15.
go back to reference Mirbozorgi, S.A., Bahrami, H., Sawan, M., Rusch, L.A., Gosselin, B.: A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants. IEEE Trans. Biomed. Circuits Syst. 10(3), 643–653 (2016)CrossRef Mirbozorgi, S.A., Bahrami, H., Sawan, M., Rusch, L.A., Gosselin, B.: A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants. IEEE Trans. Biomed. Circuits Syst. 10(3), 643–653 (2016)CrossRef
16.
go back to reference Rezaei, M., Maghsoudloo, E., Bories, C., Koninck, Y., Gosselin, B.: A low-power current-reuse analog front-end for high-density neural recording implants. IEEE Trans. Biomed. Circuits Syst. 12, 1–10 (2018)CrossRef Rezaei, M., Maghsoudloo, E., Bories, C., Koninck, Y., Gosselin, B.: A low-power current-reuse analog front-end for high-density neural recording implants. IEEE Trans. Biomed. Circuits Syst. 12, 1–10 (2018)CrossRef
Metadata
Title
Design of Sigma-Delta Converter Using 65 nm CMOS Technology for Nerves Organization in Brain Machine Interface
Authors
Anil Kumar Sahu
G. R. Sinha
Sapna Soni
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9949-8_28