Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 3/2021

01-06-2021 | Original Paper

Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network

Authors: Jadav Chandra Das, Debashis De

Published in: Photonic Network Communications | Issue 3/2021

Login to get access
share
SHARE

Abstract

This article proposes the thermometer code converter, which eliminates the requirement of binary code converter to generate gray codes in different digital modulation techniques like pulse code modulation. The nanoscale faster low-power circuit for these thermometer code-to-gray code converter has been achieved with quantum-dot cellular automata (QCA). The proposed converter circuit is made up with new QCA 2:1 multiplexer, which dominates the other existing designs in terms of QCA cells and device density. The circuits are evaluated based on area and operating speed. The design consistency is verified through theoretical values. The dissipated energy explores that the designs have lower energy dissipation. Stuck-at-fault effect analysis on the circuits has been performed. Besides, defect analysis caused by single missing cells, single extra added cells and misplaced cells is also explored. Test vectors are proposed to achieve 100% defect coverage. As encoders, these circuits can be widely employed in those high-performance functions that impose extraordinary design constraints with respect to high frequency, minimal area and low energy consumption.
Literature
1.
go back to reference Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997) Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)
2.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993) Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)
3.
go back to reference Lent, C.S.: Bypassing the transistor paradigm. Science 288, 1597–1599 (2000) Lent, C.S.: Bypassing the transistor paradigm. Science 288, 1597–1599 (2000)
4.
go back to reference Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994) Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)
5.
go back to reference Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23, 2352–2356 (2015) Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23, 2352–2356 (2015)
6.
go back to reference Das, J.C., De Debashis, S.P., Mondal, A Ahmadian, Ghaemi, F., Senu, N.: QCA based error detection circuit for nano communication network. IEEE Access 7, 67355–67366 (2019) Das, J.C., De Debashis, S.P., Mondal, A Ahmadian, Ghaemi, F., Senu, N.: QCA based error detection circuit for nano communication network. IEEE Access 7, 67355–67366 (2019)
7.
go back to reference Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39, 512–520 (2015) Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39, 512–520 (2015)
8.
go back to reference Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019) Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)
9.
go back to reference Debnath, B., Das, J.C., De, D.: Correlation and convolution for binary image filter using QCA.". Nanomater. Energy 5(1), 61–70 (2016) Debnath, B., Das, J.C., De, D.: Correlation and convolution for binary image filter using QCA.". Nanomater. Energy 5(1), 61–70 (2016)
10.
go back to reference Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243 (2019) Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243 (2019)
11.
go back to reference Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1201–1209 (2013) Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1201–1209 (2013)
12.
go back to reference Maroufi, N., Bahrepour, D.: A novel three-input approximate XOR gate design based on quantum-dot cellular automata. J. Comput. Electron. 17(2), 866–879 (2018) Maroufi, N., Bahrepour, D.: A novel three-input approximate XOR gate design based on quantum-dot cellular automata. J. Comput. Electron. 17(2), 866–879 (2018)
14.
go back to reference Rao, N.G., Srikanth, P.C., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Opt. 127, 4246–4249 (2016) Rao, N.G., Srikanth, P.C., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Opt. 127, 4246–4249 (2016)
15.
go back to reference Misra, N. K., Wairya, S., Singh, V. K.: Optimized approach for reversible code converters using quantum dot cellular automata. In Proceedings of the 4th international conference on frontiers in intelligent computing: theory and applications (FICTA) (pp. 367–378). Springer, India (2015) Misra, N. K., Wairya, S., Singh, V. K.: Optimized approach for reversible code converters using quantum dot cellular automata. In Proceedings of the 4th international conference on frontiers in intelligent computing: theory and applications (FICTA) (pp. 367–378). Springer, India (2015)
16.
go back to reference You, Y.W., Jeon, J.C.: Design of extendable BCD-EXCESS 3 code convertor using quantum-dot cellular automata. J. Adv. Navig. Technol. 20, 65–71 (2016) You, Y.W., Jeon, J.C.: Design of extendable BCD-EXCESS 3 code convertor using quantum-dot cellular automata. J. Adv. Navig. Technol. 20, 65–71 (2016)
17.
go back to reference Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik-Int. J. Light Electron Opt 130, 981–989 (2017) Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik-Int. J. Light Electron Opt 130, 981–989 (2017)
18.
go back to reference Ahmad, F., Bhat, G.M.D., Zahoor, P., Farooq, R.: Design of N-bit code converter using quantum-dot cellular automata (QCA).". Adv. Sci. Eng. Med. 7, 370–377 (2015) Ahmad, F., Bhat, G.M.D., Zahoor, P., Farooq, R.: Design of N-bit code converter using quantum-dot cellular automata (QCA).". Adv. Sci. Eng. Med. 7, 370–377 (2015)
19.
go back to reference Gladshtein, M.: Quantum-dot cellular automata serial decimal processing-in-wire: run-time reconfigurable wiring approach. Microelectron. J. 55, 152–161 (2016) Gladshtein, M.: Quantum-dot cellular automata serial decimal processing-in-wire: run-time reconfigurable wiring approach. Microelectron. J. 55, 152–161 (2016)
20.
go back to reference Ramesh, B., Rani, M.A.: Design of binary to BCD code converter using area optimized quantum dot cellular automata full adder. Int. J.Eng. (IJE). 9, 49–64 (2015) Ramesh, B., Rani, M.A.: Design of binary to BCD code converter using area optimized quantum dot cellular automata full adder. Int. J.Eng. (IJE). 9, 49–64 (2015)
22.
go back to reference Das, J.C., Debnath, B., De, D.: Reversible gate based cipher text using QCA for nanocommunication. Nanomater. Energy 6, 7–16 (2017) Das, J.C., Debnath, B., De, D.: Reversible gate based cipher text using QCA for nanocommunication. Nanomater. Energy 6, 7–16 (2017)
23.
go back to reference Sardinha, L.H., Costa, A.M.M., Neto, O.P.V., Vieira, L.F.M., Vieira, M.A.M.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31, 825–834 (2013) Sardinha, L.H., Costa, A.M.M., Neto, O.P.V., Vieira, L.F.M., Vieira, M.A.M.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31, 825–834 (2013)
24.
go back to reference Das S., De D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization, In Proc. ICRCC, SKP Engg. College, Tamilnadu, India, 2012, pp. 43–47 Das S., De D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization, In Proc. ICRCC, SKP Engg. College, Tamilnadu, India, 2012, pp. 43–47
27.
go back to reference Das, J.C., Purkayastha, T., De, D.: Reversible nano-router using QCA for nanocommunication. Nanomater. Energy 5, 28–42 (2016) Das, J.C., Purkayastha, T., De, D.: Reversible nano-router using QCA for nanocommunication. Nanomater. Energy 5, 28–42 (2016)
28.
go back to reference Silva, D., Sardinha, L., Vieira, M., Vieira, L., Neto, O.V.: Robust serial nano-communication with QCA. IEEE Trans. on Nanotechnol. 13, 464–472 (2015) Silva, D., Sardinha, L., Vieira, M., Vieira, L., Neto, O.V.: Robust serial nano-communication with QCA. IEEE Trans. on Nanotechnol. 13, 464–472 (2015)
29.
go back to reference Das, J.C., De, D.: Quantum Dot-Cellular Automata Based Reversible Low Power Parity Generator and Parity Checker Design for Nanocommunication. Front. Inf. Technol. Electron. Eng. 17, 224–236 (2016) Das, J.C., De, D.: Quantum Dot-Cellular Automata Based Reversible Low Power Parity Generator and Parity Checker Design for Nanocommunication. Front. Inf. Technol. Electron. Eng. 17, 224–236 (2016)
30.
go back to reference Das, J.C., Debnath, B., De, D.: Image Steganography using Quantum dot Cellular Automata. Quantum Matter. 4, 504–517 (2015) Das, J.C., Debnath, B., De, D.: Image Steganography using Quantum dot Cellular Automata. Quantum Matter. 4, 504–517 (2015)
31.
go back to reference Debnath, B., Das, J.C., De, D.: Reversible logic based image steganography using QCA for secure nanocommunication. IET Circuits Devices Syst. 11, 58–67 (2017) Debnath, B., Das, J.C., De, D.: Reversible logic based image steganography using QCA for secure nanocommunication. IET Circuits Devices Syst. 11, 58–67 (2017)
32.
go back to reference Brown, S., Vranesic, Z.: Fundamental of Digital Logic Design with VHDL, TATA McGraw Hill companies, 2007. Brown, S., Vranesic, Z.: Fundamental of Digital Logic Design with VHDL, TATA McGraw Hill companies, 2007.
35.
go back to reference Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017) Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017)
36.
go back to reference Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014) Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)
37.
go back to reference Ramesh, B., Rani, M.A.: Design of an optimal decimal adder in quantum dot cellular automata. Int. J. Nanotechnol Appl 11(2), 197–211 (2017) Ramesh, B., Rani, M.A.: Design of an optimal decimal adder in quantum dot cellular automata. Int. J. Nanotechnol Appl 11(2), 197–211 (2017)
38.
go back to reference Das, J.C., De, D.: Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. 54, 802–811 (2016) Das, J.C., De, D.: Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. 54, 802–811 (2016)
39.
go back to reference Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9, 01012 (2017) Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9, 01012 (2017)
40.
go back to reference Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Micro. J. 45, 1522–1532 (2014) Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Micro. J. 45, 1522–1532 (2014)
41.
go back to reference Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015) Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)
42.
go back to reference Mukhopadhyay, D., Dutta, P.: quantum cellular automata based novel unit 2:1 multiplexer. Int. J. Comput. Appl. 43, 22–25 (2012) Mukhopadhyay, D., Dutta, P.: quantum cellular automata based novel unit 2:1 multiplexer. Int. J. Comput. Appl. 43, 22–25 (2012)
43.
go back to reference Beigh, M. R., Mustafa, M.: Performance evaluation of multiplexer designs in quantum-dot cellular automata (QCA). In International conference on advances in computers, communication and electronic engineering, University of Kashmir, India, March 16–18, (2015). pp. 245–249 Beigh, M. R., Mustafa, M.: Performance evaluation of multiplexer designs in quantum-dot cellular automata (QCA). In International conference on advances in computers, communication and electronic engineering, University of Kashmir, India, March 16–18, (2015). pp. 245–249
44.
go back to reference Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electr. 13, 198–210 (2013) Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electr. 13, 198–210 (2013)
45.
go back to reference Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues. 8, 55–60 (2011) Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues. 8, 55–60 (2011)
46.
go back to reference Chabi, A.M., Roohi, A., Khademolhosseini, H., Sheikhfaal, S., Angizi, S., Navi, K., DeMara, R.F.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017) Chabi, A.M., Roohi, A., Khademolhosseini, H., Sheikhfaal, S., Angizi, S., Navi, K., DeMara, R.F.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)
47.
go back to reference Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 01012 (2017) Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 01012 (2017)
48.
go back to reference Khan, A., Mandal, S.: Robust multiplexer design and analysis using quantum dot cellular automata. Int. J. Theor. Phys. 58(3), 719–733 (2019) MathSciNetMATH Khan, A., Mandal, S.: Robust multiplexer design and analysis using quantum dot cellular automata. Int. J. Theor. Phys. 58(3), 719–733 (2019) MathSciNetMATH
49.
go back to reference Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., Navi, K.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017) Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., Navi, K.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)
50.
go back to reference Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11, 1239–1251 (2012) Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11, 1239–1251 (2012)
51.
go back to reference Xiaojun, M., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009) Xiaojun, M., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009)
52.
go back to reference Sen, B., Dutta, M., Sikdar, B.K.: Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectronics J. 45, 239–248 (2014) Sen, B., Dutta, M., Sikdar, B.K.: Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectronics J. 45, 239–248 (2014)
53.
go back to reference Tahoori, M., Momenzadeh, M., Huang, J., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3, 432–442 (2004) Tahoori, M., Momenzadeh, M., Huang, J., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3, 432–442 (2004)
54.
go back to reference Tahoori, M. B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale, In Proc. of the 22nd IEEE VTS, pp. 291–296, (2004). Tahoori, M. B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale, In Proc. of the 22nd IEEE VTS, pp. 291–296, (2004).
55.
go back to reference Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits, in Proc. of the 20th IEEE DFT, pp. 208–216 (2005). Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits, in Proc. of the 20th IEEE DFT, pp. 208–216 (2005).
Metadata
Title
Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network
Authors
Jadav Chandra Das
Debashis De
Publication date
01-06-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 3/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00937-9