Skip to main content
Top
Published in: Photonic Network Communications 2-3/2022

18-09-2022 | Original Paper

Design of tunable optical frequency comb generation based on electro-optic modulator

Authors: Vishal Sharma, Surinder Singh, Lovkesh

Published in: Photonic Network Communications | Issue 2-3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An optical frequency comb having 24 channels with 1.1 dB maximum power deviation and tunable channel spacing is demonstrated by controlling the amplitude of a periodic Gaussian-shaped radiofrequency signal applied to the two cascaded intensity modulators followed by a phase modulator. The channel spacing and frequency of the comb generator can be tuned by tuning the RF signal oscillating frequency and frequency of the laser source, respectively. Furthermore, the comb spectrum flatness is achieved by controlling the pulse profile of periodic optical signal, which is controlled by the amplitude of a radiofrequency signal. The proposed optical frequency comb would be beneficial as a multichannel source in super-capacity and high-performance optical transport networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Z., Ma, M., Sun, H., Khalil, M., Adams, R., Yim, K., Jin, X., Chen, L.R.: OFC generation using CMOS compatible cascaded Mach-Zehnder modulators. IEEE J. Quantum Electron. 55(6), 8400206 (2019)CrossRef Wang, Z., Ma, M., Sun, H., Khalil, M., Adams, R., Yim, K., Jin, X., Chen, L.R.: OFC generation using CMOS compatible cascaded Mach-Zehnder modulators. IEEE J. Quantum Electron. 55(6), 8400206 (2019)CrossRef
2.
go back to reference Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Demonstration of OFC generation using four-wave mixing in highly nonlinear fiber. Optik 241, 166948 (2021)CrossRef Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Demonstration of OFC generation using four-wave mixing in highly nonlinear fiber. Optik 241, 166948 (2021)CrossRef
3.
go back to reference Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017)CrossRef Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017)CrossRef
4.
go back to reference Udem, T., Holzwarth, R., Hansch, T.W.: Optical frequency metrology. Nature 416, 233–237 (2002)CrossRef Udem, T., Holzwarth, R., Hansch, T.W.: Optical frequency metrology. Nature 416, 233–237 (2002)CrossRef
5.
go back to reference Suh, M.-G., Yang, Q.-F., Yang, K.Y., Yi, X., Vahala, K.J.: Microresonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)CrossRef Suh, M.-G., Yang, Q.-F., Yang, K.Y., Yi, X., Vahala, K.J.: Microresonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)CrossRef
6.
go back to reference Anashkina, E.A., Koptev, M.Y., Andrianov, A.V., Dorofeev, V.V., Singh, S., Lovkesh, Leuchs, G., Kim, A.V.: Reconstruction of optical pulse intensity and phase based on SPM spectra measurements in microstructured tellurite fiber in telecommunication range. J. Light. Technol. 37(17), 4375–4381 (2019)CrossRef Anashkina, E.A., Koptev, M.Y., Andrianov, A.V., Dorofeev, V.V., Singh, S., Lovkesh, Leuchs, G., Kim, A.V.: Reconstruction of optical pulse intensity and phase based on SPM spectra measurements in microstructured tellurite fiber in telecommunication range. J. Light. Technol. 37(17), 4375–4381 (2019)CrossRef
7.
go back to reference Ozharar, S., Quinlan, F., Ozdur, I., Gee, S., Delfett, P.J.: Ultraflat optical comb generation by phase-only modulation of continuous-wave light. IEEE Photonics Technol. Lett. 20(1), 36–38 (2008)CrossRef Ozharar, S., Quinlan, F., Ozdur, I., Gee, S., Delfett, P.J.: Ultraflat optical comb generation by phase-only modulation of continuous-wave light. IEEE Photonics Technol. Lett. 20(1), 36–38 (2008)CrossRef
8.
go back to reference Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)CrossRef Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)CrossRef
9.
go back to reference Washburn, B.R., Diddams, S.A., Newbury, N.R., Nicholson, J.W., Yan, M.F., Jørgensen, C.G.: Phase-locked, erbium-fiber-laserbased frequency comb in the near infrared. Opt. Lett. 29(3), 250–252 (2004)CrossRef Washburn, B.R., Diddams, S.A., Newbury, N.R., Nicholson, J.W., Yan, M.F., Jørgensen, C.G.: Phase-locked, erbium-fiber-laserbased frequency comb in the near infrared. Opt. Lett. 29(3), 250–252 (2004)CrossRef
10.
go back to reference Bartels, A., Heinecke, D., Diddams, S.A.: 10-GHz self-referenced OFC. Science 326(5953), 681 (2009)CrossRef Bartels, A., Heinecke, D., Diddams, S.A.: 10-GHz self-referenced OFC. Science 326(5953), 681 (2009)CrossRef
11.
go back to reference Burghoff, D., Kao, T.-Y., Han, N., Chan, C.W.I., Cai, X., Yang, Y., Hayton, D.J., Gao, J.-R., Reno, J.L., Qing, Hu.: Terahertz laser frequency combs. Nat. Photonics 8(6), 462–467 (2014)CrossRef Burghoff, D., Kao, T.-Y., Han, N., Chan, C.W.I., Cai, X., Yang, Y., Hayton, D.J., Gao, J.-R., Reno, J.L., Qing, Hu.: Terahertz laser frequency combs. Nat. Photonics 8(6), 462–467 (2014)CrossRef
12.
go back to reference Kim, J., Song, Y.: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)CrossRef Kim, J., Song, Y.: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)CrossRef
13.
go back to reference Uvin, S., Keyvaninia, S., Lelarge, F., Duan, G.-H., Kuyken, B., Roelkens, G.: Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser. Opt. Express 24(5), 5277–5286 (2016)CrossRef Uvin, S., Keyvaninia, S., Lelarge, F., Duan, G.-H., Kuyken, B., Roelkens, G.: Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser. Opt. Express 24(5), 5277–5286 (2016)CrossRef
14.
go back to reference Wang, Z., et al.: A III-V-on-Si ultra-dense comb laser. Light Sci. Appl. 6(5), e16260 (2017)CrossRef Wang, Z., et al.: A III-V-on-Si ultra-dense comb laser. Light Sci. Appl. 6(5), e16260 (2017)CrossRef
15.
go back to reference Liu, L., Zhang, X., Xu, T., Dai, Z., Liu, T.: Simple OFC generation using a passively mode-locked quantum dot laser. Opt. Commun. 396, 105–109 (2017)CrossRef Liu, L., Zhang, X., Xu, T., Dai, Z., Liu, T.: Simple OFC generation using a passively mode-locked quantum dot laser. Opt. Commun. 396, 105–109 (2017)CrossRef
16.
go back to reference Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)CrossRef Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)CrossRef
17.
go back to reference Stern, B., Ji, X., Okawachi, Y., Gaeta, A.L., Lipson, M.: Batteryoperated integrated frequency comb generator. Nature 562(7727), 401–405 (2018)CrossRef Stern, B., Ji, X., Okawachi, Y., Gaeta, A.L., Lipson, M.: Batteryoperated integrated frequency comb generator. Nature 562(7727), 401–405 (2018)CrossRef
18.
go back to reference Dupuis, N., Doerr, C.R., Zhang, L., Chen, L., Sauer, N.J., Dong, Po., Buhl, L.L., Ahn, D.: InP-based comb generator for optical FDM. J. Light. 30(4), 466–472 (2012)CrossRef Dupuis, N., Doerr, C.R., Zhang, L., Chen, L., Sauer, N.J., Dong, Po., Buhl, L.L., Ahn, D.: InP-based comb generator for optical FDM. J. Light. 30(4), 466–472 (2012)CrossRef
19.
go back to reference Pu, M., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)CrossRef Pu, M., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)CrossRef
20.
go back to reference Sharma, V., Singh, S., Lovkesh: Cross-phase modulation based ultra-flat 90-line optical frequency comb generation. Opt. Quantum Electron. 53, 657 (2021)CrossRef Sharma, V., Singh, S., Lovkesh: Cross-phase modulation based ultra-flat 90-line optical frequency comb generation. Opt. Quantum Electron. 53, 657 (2021)CrossRef
21.
go back to reference Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Optical frequency comb generation by the exploitation of gain modulation phenomenon in semiconductor optical amplifier. Opt. Eng. 60(6), 066108 (2021) Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Optical frequency comb generation by the exploitation of gain modulation phenomenon in semiconductor optical amplifier. Opt. Eng. 60(6), 066108 (2021)
22.
go back to reference Yang, T., Dong, J., Liao, S., Huang, D., Zhang, X.: Comparison analysis of OFC generation with nonlinear effects in highly nonlinear fibers. Opt. Express 21(7), 8508–8520 (2013)CrossRef Yang, T., Dong, J., Liao, S., Huang, D., Zhang, X.: Comparison analysis of OFC generation with nonlinear effects in highly nonlinear fibers. Opt. Express 21(7), 8508–8520 (2013)CrossRef
23.
go back to reference Supradeepa, V.R., Weiner, A.M.: Bandwidth scaling and spectral flatness enhancement of OFCs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Opt. Lett. 37(15), 3066–3068 (2012)CrossRef Supradeepa, V.R., Weiner, A.M.: Bandwidth scaling and spectral flatness enhancement of OFCs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Opt. Lett. 37(15), 3066–3068 (2012)CrossRef
25.
go back to reference Fatome, J., Pitois, S., Millot, G.: 20-GHz to 1-GHz repetition rate pulse source based on multiple four wave mixing in optical fiber. IEEE J. Quantum Electron. 42(10), 1038–1046 (2006)CrossRef Fatome, J., Pitois, S., Millot, G.: 20-GHz to 1-GHz repetition rate pulse source based on multiple four wave mixing in optical fiber. IEEE J. Quantum Electron. 42(10), 1038–1046 (2006)CrossRef
26.
go back to reference Cruz, F.C., Marconi, J.D., Cerqueira, A., Fragnito, H.L.: Broadband second harmonic generation of an OFC produced by four-wave mixing in highly nonlinear fibers. Opt. Commun. 283, 1459–1462 (2010)CrossRef Cruz, F.C., Marconi, J.D., Cerqueira, A., Fragnito, H.L.: Broadband second harmonic generation of an OFC produced by four-wave mixing in highly nonlinear fibers. Opt. Commun. 283, 1459–1462 (2010)CrossRef
27.
go back to reference Kun, Qu., Zhao, S., Li, X., Zhu, Z., Liang, D., Liang, D.: Ultra-flat and broadband OFCc generator via a single Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 29(2), 255–258 (2017)CrossRef Kun, Qu., Zhao, S., Li, X., Zhu, Z., Liang, D., Liang, D.: Ultra-flat and broadband OFCc generator via a single Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 29(2), 255–258 (2017)CrossRef
28.
go back to reference Yamamoto, T., Hitomi, K., Kobayashi, W., Yasaka, H.: OFC block generation by using semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 25(1), 40–42 (2013)CrossRef Yamamoto, T., Hitomi, K., Kobayashi, W., Yasaka, H.: OFC block generation by using semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 25(1), 40–42 (2013)CrossRef
29.
go back to reference Martín-Mateos, P., Porro, A., Acedo, P.: Fully adaptable electro-optic dual-comb generation. IEEE Photonics Technol. Lett. 30(2), 161–164 (2018)CrossRef Martín-Mateos, P., Porro, A., Acedo, P.: Fully adaptable electro-optic dual-comb generation. IEEE Photonics Technol. Lett. 30(2), 161–164 (2018)CrossRef
30.
go back to reference Wang, Q., Huo, L., Xing, Y., Zhou, B.: Ultra-flat OFC generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 39(10), 3050–3053 (2014)CrossRef Wang, Q., Huo, L., Xing, Y., Zhou, B.: Ultra-flat OFC generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 39(10), 3050–3053 (2014)CrossRef
31.
go back to reference Lin, J., Sepehrian, H., Xu, Y., Rusch, L.A., Shi, W.: Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018)CrossRef Lin, J., Sepehrian, H., Xu, Y., Rusch, L.A., Shi, W.: Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018)CrossRef
32.
go back to reference Wu, R., Supradeepa, V.R., Long, C.M., Leaird, D.E., Weiner, A.M.: Generation of very flat OFCs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35(19), 3234–3236 (2010)CrossRef Wu, R., Supradeepa, V.R., Long, C.M., Leaird, D.E., Weiner, A.M.: Generation of very flat OFCs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35(19), 3234–3236 (2010)CrossRef
33.
go back to reference Sharma, V., Singh, S., Bhatia, L.: Theoretical model of cascaded electro-optic intensity modulator-based 2.31-THz broad optical frequency comb generator. Opt. Eng. 60(11), 115107 (2021)CrossRef Sharma, V., Singh, S., Bhatia, L.: Theoretical model of cascaded electro-optic intensity modulator-based 2.31-THz broad optical frequency comb generator. Opt. Eng. 60(11), 115107 (2021)CrossRef
34.
go back to reference Hmood, J.K., Emami, S.D., Noordin, K.A., Ahmad, H., Harun, S.W., Shalaby, H.M.H.: OFC generation based on chirping of Mach-Zehnder modulators. Opt. Commun. 55(6), 139–146 (2015)CrossRef Hmood, J.K., Emami, S.D., Noordin, K.A., Ahmad, H., Harun, S.W., Shalaby, H.M.H.: OFC generation based on chirping of Mach-Zehnder modulators. Opt. Commun. 55(6), 139–146 (2015)CrossRef
35.
go back to reference Li, X., Xiao, J.: Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks. Opt. Fiber Technol. 23, 116–121 (2015)CrossRef Li, X., Xiao, J.: Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks. Opt. Fiber Technol. 23, 116–121 (2015)CrossRef
36.
go back to reference Yan, J., Zhang, S., Xia, Z., Bai, M., Zheng, Z.: A tunable OFC generator using single dual parallel Mach-Zehnder modulator. Opt. Laser Technol. 72, 74–78 (2015)CrossRef Yan, J., Zhang, S., Xia, Z., Bai, M., Zheng, Z.: A tunable OFC generator using single dual parallel Mach-Zehnder modulator. Opt. Laser Technol. 72, 74–78 (2015)CrossRef
37.
go back to reference Zhang, F., Ge, X., Pan, S.: A two-stage OFC generator based on polarization modulators and a Mach-Zehnder interferometer. Opt. Commun. 354(14), 94–102 (2015)CrossRef Zhang, F., Ge, X., Pan, S.: A two-stage OFC generator based on polarization modulators and a Mach-Zehnder interferometer. Opt. Commun. 354(14), 94–102 (2015)CrossRef
38.
go back to reference He, C., Pan, S., Guo, R., Zhao, Y., Pan, M.: Ultra-flat OFC generated based on cascaded polarization modulators. Opt. Lett. 37(18), 3834–3836 (2012)CrossRef He, C., Pan, S., Guo, R., Zhao, Y., Pan, M.: Ultra-flat OFC generated based on cascaded polarization modulators. Opt. Lett. 37(18), 3834–3836 (2012)CrossRef
39.
go back to reference Cartledge, J.C., Rolland, C., Lemerle, S., Solheim, A.: Theoretical performance of 10 Gb/s lightwave systems using a III-V semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 6(2), 282–284 (1994)CrossRef Cartledge, J.C., Rolland, C., Lemerle, S., Solheim, A.: Theoretical performance of 10 Gb/s lightwave systems using a III-V semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 6(2), 282–284 (1994)CrossRef
Metadata
Title
Design of tunable optical frequency comb generation based on electro-optic modulator
Authors
Vishal Sharma
Surinder Singh
Lovkesh
Publication date
18-09-2022
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2-3/2022
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00984-w

Other articles of this Issue 2-3/2022

Photonic Network Communications 2-3/2022 Go to the issue