Skip to main content
Top

2017 | OriginalPaper | Chapter

Designer Systems of Systems: A Rational Integrated Approach of System Engineering to Tailored Aerodynamics, Aeroelasticity, Aero-viscoelasticity, Stability, Control, Geometry, Materials, Structures, Propulsion, Performance, Sizing, Weight, Cost

Authors : Harry H. Hilton, Steven J. D’Urso, Noe Wiener

Published in: Transdisciplinary Perspectives on Complex Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter [Portions of the analysis and results of this continuing research project were presented at the Fourth International Conference on Inverse Problems, Design and Optimization (IPDO–2013), Albi, France (Hilton and D’Urso, Paper ID 06290, 2013).] reports on a comprehensive optimized inverse analysis protocol that has been formulated at the complex multifunctional, multiphysics and multidisciplinary total system of systems (SoS) level leading to trans-disciplinary convergence for the entire designer vehicle with provisions for optimized/tailored aerodynamics, stability, control, materials, structures, propulsion, performance, sizing, weight, cost, etc. The protocol for these inverse problems is based on a generalized calculus of variations approach, including but not limited to Lagrange multipliers.
The possibility of achieving such a generalized unified approach has become a reality through the double advent of modern computer software and hardware. First, the availability of such programs as MATLAB™, MATHEMATICA™, MAPLE™, etc. make it feasible to carry out the detailed large scale analytical enterprises, such as multiple symbolic integrations, differentiations, matrix algebra, etc. Secondly, the online operational advent of the University of Illinois at Urbana-Champaign National Center for Supercomputing Applications/National Science Foundation (UIUC NCSA/NSF) Blue Waters™, the sustained peta-scale (1015 flops/s) computing system (Anonymous, http://​www.​ncsa.​uiuc.​edu/​BlueWaters/​, 2011; Anonymous, http://​www.​ncsa.​illinois.​edu/​News/​Stories/​Kramer/​, 2009; Anonymous, About blue waters, 2014; Anonymous, https://​bluewaters.​ncsa.​illinois.​edu, 2013), will allow efficient solutions of the necessary hundreds of millions of simultaneous nonlinear algebraic equations describing parameters for an entire air or space flight vehicle (Through this chapter the term vehicle is used to denote atmospheric and space flight vehicles unless otherwise specified.) or other large scale SoS that may contain numerous rigid, specified and/or flexible sub-systems as well as aerodynamics, cost, manufacturing, performance, propulsion, stability and control, etc.
Illustrative examples are limited to structures, solid mechanics and aero-viscoelastic examples that represent currently available solutions. Additional parts of the entire complex SoS are under investigation and will be reported in archival journals in future years.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Civil and military airplanes, missiles, spacecraft, UAVs, MAVs, wind turbine and helicopter blades, helicopters, etc.
 
2
Entire passage: “Two important characteristics of maps should be noticed. A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness” [125].
 
3
First online operation in 2013.
 
4
FGM = functionally graded materials, EFGM = elastic FGM, VFGM = viscoelastic FGM.
 
5
See also Sect. 12 for details on cost functions.
 
6
Such as von Mises, maximum stress or strain, octahedral shear [195], deterministic Shanley-Ryder [196], probabilistic Shanley-Ryder [21, 132], etc.
 
7
From a fundamental mechanics point of view, FGMs are essentially non-homogeneous materials and should be treated as such. Additionally and separately they may also be anisotropic.
 
8
Excluded: radio, TV, GPS, monitors, autopilot, navigation, etc.; not necessarily excluded: controls.
 
9
In economics, elasticity is defined as the degree to which a demand or supply is sensitive to changes in price or income.
 
Literature
1.
go back to reference Bruhn, E. F., Bollard, R. J. H., Hackman, L. E., Lianis, G., William, M., Schmitt, A. F., et al. (1973). Analysis and design of flight vehicle structures. Indianapolis: S. R. Jacob. Bruhn, E. F., Bollard, R. J. H., Hackman, L. E., Lianis, G., William, M., Schmitt, A. F., et al. (1973). Analysis and design of flight vehicle structures. Indianapolis: S. R. Jacob.
2.
go back to reference Altus, E. (1989). Mechanics of composite materials: An introductory course. Toronto: Ontario Centre for Materials Research. Altus, E. (1989). Mechanics of composite materials: An introductory course. Toronto: Ontario Centre for Materials Research.
3.
go back to reference Gibson, R. F. (1994). Principles of composite material mechanics. New York: McGraw-Hill. Gibson, R. F. (1994). Principles of composite material mechanics. New York: McGraw-Hill.
4.
go back to reference Hyer, M. W. (Ed.). (1993). Mechanics of composite materials—Nonlinear effects, AMD-159. New York: ASME. Hyer, M. W. (Ed.). (1993). Mechanics of composite materials—Nonlinear effects, AMD-159. New York: ASME.
5.
go back to reference Hyer, M. W. (2008). Stress analysis of fiber-reinforced composite materials. Lancaster, PA: DEStech Publications. Hyer, M. W. (2008). Stress analysis of fiber-reinforced composite materials. Lancaster, PA: DEStech Publications.
6.
go back to reference Mallick, P. K. (2008). Fiber-reinforced composites, materials, manufacturing, and design (3rd ed.). New York: CRC Press. Mallick, P. K. (2008). Fiber-reinforced composites, materials, manufacturing, and design (3rd ed.). New York: CRC Press.
7.
go back to reference Jones, R. M. (1999). Mechanics of composite materials (2nd ed.). New York: CRC Press. Jones, R. M. (1999). Mechanics of composite materials (2nd ed.). New York: CRC Press.
9.
go back to reference Sierakowski, R. L., & Chaturvedi, S. K. (1997). Dynamic loading and characterization of fiber-reinforced composites. New York: John Wiley & Sons Inc. Sierakowski, R. L., & Chaturvedi, S. K. (1997). Dynamic loading and characterization of fiber-reinforced composites. New York: John Wiley & Sons Inc.
10.
go back to reference Vinson, J. R. (1999). The behavior of sandwich structures of isotropic and composite materials. Lancaster, PA: Technimic Publishing Co. Vinson, J. R. (1999). The behavior of sandwich structures of isotropic and composite materials. Lancaster, PA: Technimic Publishing Co.
11.
go back to reference Vinson, J. R., & Sierakowski, R. L. (2011). The behavior of structures composed of composite materials (2nd ed.). Amsterdam: Kluwer. Vinson, J. R., & Sierakowski, R. L. (2011). The behavior of structures composed of composite materials (2nd ed.). Amsterdam: Kluwer.
12.
go back to reference Hilton, H. H. (2010). Aeroelasticity and aero-viscoelasticity: A critical appreciation of similarities and differences. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2702. Orlando, FL. Hilton, H. H. (2010). Aeroelasticity and aero-viscoelasticity: A critical appreciation of similarities and differences. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2702. Orlando, FL.
14.
go back to reference Hilton, H. H., Lee, D. H., & El Fouly, A. R. A. (2008). General analysis of viscoelastic designer functionally graded auxetic materials engineered/tailored for specific task performances. Mechanics of Time-Dependent Materials, 12, 151–178.CrossRef Hilton, H. H., Lee, D. H., & El Fouly, A. R. A. (2008). General analysis of viscoelastic designer functionally graded auxetic materials engineered/tailored for specific task performances. Mechanics of Time-Dependent Materials, 12, 151–178.CrossRef
15.
go back to reference Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section shape. Journal of Engineering Design, 7, 129–150.CrossRef Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section shape. Journal of Engineering Design, 7, 129–150.CrossRef
16.
go back to reference Shanley, F. R. (1948). Principles of optimum structural design as applied to aircraft weight analysis. Santa Monica, CA: Douglas Aircraft C. Shanley, F. R. (1948). Principles of optimum structural design as applied to aircraft weight analysis. Santa Monica, CA: Douglas Aircraft C.
17.
go back to reference Lin, Y.-K. (1967). Probabilistic theory of structural dynamics. Huntington, NY: Krieger. Lin, Y.-K. (1967). Probabilistic theory of structural dynamics. Huntington, NY: Krieger.
18.
go back to reference Lin, Y.-K., & Cai, G.-Q. (1995). Probabilistic structural dynamics: Advanced theory and applications. New York: McGraw-Hill. Lin, Y.-K., & Cai, G.-Q. (1995). Probabilistic structural dynamics: Advanced theory and applications. New York: McGraw-Hill.
19.
go back to reference Elishakoff, I. (2010). Optimization and anti-optimization of structures under uncertainty. London: Imperial College Press.CrossRef Elishakoff, I. (2010). Optimization and anti-optimization of structures under uncertainty. London: Imperial College Press.CrossRef
20.
go back to reference Gallagher, R. H., & Zienkiewicz, O. C. (Eds.). (1973). Optimum structural design—Theory and applications. New York: John Wiley & Sons. Gallagher, R. H., & Zienkiewicz, O. C. (Eds.). (1973). Optimum structural design—Theory and applications. New York: John Wiley & Sons.
21.
go back to reference Hilton, H. H., & Feigen, M. (1960). Minimum weight analysis based on structural reliability. Journal of the Aero/Space Sciences, 27, 641–652.CrossRef Hilton, H. H., & Feigen, M. (1960). Minimum weight analysis based on structural reliability. Journal of the Aero/Space Sciences, 27, 641–652.CrossRef
22.
go back to reference Lemanski, S. L., & Weaver, P. M. (2003). Analytical optimization of composite cylindrical shells to meet given cross-sectional stiffness properties. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA. Lemanski, S. L., & Weaver, P. M. (2003). Analytical optimization of composite cylindrical shells to meet given cross-sectional stiffness properties. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.
23.
go back to reference Cecchini, L., & Weaver, P. M. (2003). The optimization of foam-filled cylindrical shells subject to flexural loading. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA. Cecchini, L., & Weaver, P. M. (2003). The optimization of foam-filled cylindrical shells subject to flexural loading. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.
24.
go back to reference Weaver, P. M. (2004). On optimization of long anisotropic flat plates subject to shear buckling loads. In Proceedings 45th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA. Weaver, P. M. (2004). On optimization of long anisotropic flat plates subject to shear buckling loads. In Proceedings 45th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.
25.
go back to reference Lemanski, S. L., & Weaver, P. M. (2006). Optimization of a 4-layer laminated cylindrical shell to meet given cross-sectional stiffness properties. Composite Structures, 72, 163–176.CrossRef Lemanski, S. L., & Weaver, P. M. (2006). Optimization of a 4-layer laminated cylindrical shell to meet given cross-sectional stiffness properties. Composite Structures, 72, 163–176.CrossRef
26.
go back to reference Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2006). Local optimization of long anisotropic laminated fibre composite panels with T-shape stiffeners. In Proceedings 47th AIAA/ASCE/ASME/AHS SDM Conference. Newport, RI. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2006). Local optimization of long anisotropic laminated fibre composite panels with T-shape stiffeners. In Proceedings 47th AIAA/ASCE/ASME/AHS SDM Conference. Newport, RI.
27.
go back to reference Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of long anisotropic laminated fiber composite panels with T-shaped stiffeners. AIAA Journal, 45, 2497–2509.CrossRef Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of long anisotropic laminated fiber composite panels with T-shaped stiffeners. AIAA Journal, 45, 2497–2509.CrossRef
28.
go back to reference Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of anisotropic plates that vary in thicknesses and properties. In Proceedings 16th International Conference on Composite Materials. Kyoto. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of anisotropic plates that vary in thicknesses and properties. In Proceedings 16th International Conference on Composite Materials. Kyoto.
29.
go back to reference Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Local optimization of anisotropic composite panels with T-shape stiffeners. In Proceedings 48th AIAA/ASCE/ASME/AHS SDM Conference. Waikiki, HI. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Local optimization of anisotropic composite panels with T-shape stiffeners. In Proceedings 48th AIAA/ASCE/ASME/AHS SDM Conference. Waikiki, HI.
30.
go back to reference Bloomfield, M. W., Herencia, J. E., & Weaver, P. M. (2008). Optimization of anisotropic composite plates using an increased design envelope of ply orientations. In Proceedings 49th AIAA/ASCE/ASME/AHS SDM Conference. Schaumburg, IL. Bloomfield, M. W., Herencia, J. E., & Weaver, P. M. (2008). Optimization of anisotropic composite plates using an increased design envelope of ply orientations. In Proceedings 49th AIAA/ASCE/ASME/AHS SDM Conference. Schaumburg, IL.
31.
go back to reference Herencia, J. E., Hatfka, R. T., Weaver, P. M., & Friswell, M. I. (2008). Lay-up optimization of composite stiffened panels using linear approximations in lamination space. AIAA Journal, 46, 2387–2391.CrossRef Herencia, J. E., Hatfka, R. T., Weaver, P. M., & Friswell, M. I. (2008). Lay-up optimization of composite stiffened panels using linear approximations in lamination space. AIAA Journal, 46, 2387–2391.CrossRef
32.
go back to reference Blanchard, I. (2014). Composite design optimization for automated fiber placement. SAE Aerospace Engineering, 4, 14–19 (Also SAE Paper 2014-01-2261). Blanchard, I. (2014). Composite design optimization for automated fiber placement. SAE Aerospace Engineering, 4, 14–19 (Also SAE Paper 2014-01-2261).
33.
go back to reference Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2008). Initial sizing optimization of anisotropic composite panels with T-shaped stiffeners. Thin-Walled Structures, 46, 399–412.CrossRef Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2008). Initial sizing optimization of anisotropic composite panels with T-shaped stiffeners. Thin-Walled Structures, 46, 399–412.CrossRef
34.
go back to reference Hilton, H. H., & Yi, S. (1992). Analytical formulation of optimum material properties for viscoelastic damping. Journal of Smart Materials and Structures, 1, 113–122.CrossRef Hilton, H. H., & Yi, S. (1992). Analytical formulation of optimum material properties for viscoelastic damping. Journal of Smart Materials and Structures, 1, 113–122.CrossRef
35.
go back to reference Beldica, C. E., & Hilton, H. H. (1999). Analytical simulations of optimum anisotropic linear viscoelastic damping properties. Journal of Reinforced Plastics and Composites, 18, 1658–1676. Beldica, C. E., & Hilton, H. H. (1999). Analytical simulations of optimum anisotropic linear viscoelastic damping properties. Journal of Reinforced Plastics and Composites, 18, 1658–1676.
36.
go back to reference Hilton, H. H., & Sossou, G. (2012). Viscoelastic and structural damping analysis with designer materials. In Proceedings 50th AIAA Aerospace Sciences Meeting Multidisciplinary Design Optimization (MDO), AIAA Paper 2012-1256. Hilton, H. H., & Sossou, G. (2012). Viscoelastic and structural damping analysis with designer materials. In Proceedings 50th AIAA Aerospace Sciences Meeting Multidisciplinary Design Optimization (MDO), AIAA Paper 2012-1256.
37.
go back to reference Hilton, H. H. (2003). Optimum viscoelastic designer materials for minimizing failure probabilities during composite cure. Journal of Thermal Stresses, 26, 547–557.CrossRef Hilton, H. H. (2003). Optimum viscoelastic designer materials for minimizing failure probabilities during composite cure. Journal of Thermal Stresses, 26, 547–557.CrossRef
38.
go back to reference Hilton, H. H. (2005). Optimum linear and nonlinear viscoelastic designer functionally graded materials—characterization and analysis. Composites Part A: Applied Science and Manufacturing, 36, 1329–1334.CrossRef Hilton, H. H. (2005). Optimum linear and nonlinear viscoelastic designer functionally graded materials—characterization and analysis. Composites Part A: Applied Science and Manufacturing, 36, 1329–1334.CrossRef
39.
go back to reference Hilton, H. H. (2006). Designer linear viscoelastic material properties tailored to minimize probabilistic failures or thermal stress induced dynamic column creep buckling. Journal of Thermal Stresses, 29, 403–421.CrossRef Hilton, H. H. (2006). Designer linear viscoelastic material properties tailored to minimize probabilistic failures or thermal stress induced dynamic column creep buckling. Journal of Thermal Stresses, 29, 403–421.CrossRef
40.
go back to reference Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, 18–39. Southampton. Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, 18–39. Southampton.
41.
go back to reference Hilton, H. H., & El Fouly, A. R. A. (2007). Designer auxetic viscoelastic sandwich column materials tailored to minimize creep buckling failure probabilities and prolong survival times. In Proceedings 48th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA Paper 2007-2400. Hilton, H. H., & El Fouly, A. R. A. (2007). Designer auxetic viscoelastic sandwich column materials tailored to minimize creep buckling failure probabilities and prolong survival times. In Proceedings 48th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA Paper 2007-2400.
42.
go back to reference Hilton, H. H., & D’Urso, S. J. (2013). Designer Euler and elastica columns subjected to aerodynamic loads—System engineering of the aeroelasticity of wind turbine towers. In Proceedings 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2013-1821. Boston, MA. Hilton, H. H., & D’Urso, S. J. (2013). Designer Euler and elastica columns subjected to aerodynamic loads—System engineering of the aeroelasticity of wind turbine towers. In Proceedings 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2013-1821. Boston, MA.
43.
go back to reference Naraghi, M., Chasiotis, I., & Hilton, H. H. (2009). Theory of designer nano – viscoelastic composites. In Proceedings World Scientific and Engineering Academy International Conference on Continuum Mechanics 09, 225–233. Cambridge. Naraghi, M., Chasiotis, I., & Hilton, H. H. (2009). Theory of designer nano – viscoelastic composites. In Proceedings World Scientific and Engineering Academy International Conference on Continuum Mechanics 09, 225–233. Cambridge.
44.
go back to reference Hilton, H. H. (2009). Analytical formulation of optimal viscoelastic designer material properties for sandwich/composites. In Proceedings 16th Journées Nationales sur les Composites, Paper No. 119. Toulouse. Hilton, H. H. (2009). Analytical formulation of optimal viscoelastic designer material properties for sandwich/composites. In Proceedings 16th Journées Nationales sur les Composites, Paper No. 119. Toulouse.
45.
go back to reference Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, CD-ROM:1-16. University of Southampton. Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, CD-ROM:1-16. University of Southampton.
46.
go back to reference Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Newport, RI. Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Newport, RI.
47.
go back to reference Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Reston, VA. Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Reston, VA.
48.
go back to reference Hilton, H. H. (2007). Designer auxetic viscoelastic materials for sandwich plates tailored to minimize failure probabilities and prolong survival times. In Proceedings of the 2007 International Mechanical Engineering Congress and Exposition. ASME Paper IMECE 2007-41079. Seattle, WA. Hilton, H. H. (2007). Designer auxetic viscoelastic materials for sandwich plates tailored to minimize failure probabilities and prolong survival times. In Proceedings of the 2007 International Mechanical Engineering Congress and Exposition. ASME Paper IMECE 2007-41079. Seattle, WA.
49.
go back to reference Hilton, H. H. (2008). Functionally graded designer viscoelastic materials tailored to perform prescribed tasks with failure probabilities and survival times. In G. H. Paulino, M. J. Pindera, R. H. Dodds, F. A. Rochinha, E. V. Dave, & L. Chen (Eds.), Proceedings Multiscale and Functionally Graded Materials Conference (FGM-IX), AIP-973:410–415. American Institute of Physics, Melville, NY. Hilton, H. H. (2008). Functionally graded designer viscoelastic materials tailored to perform prescribed tasks with failure probabilities and survival times. In G. H. Paulino, M. J. Pindera, R. H. Dodds, F. A. Rochinha, E. V. Dave, & L. Chen (Eds.), Proceedings Multiscale and Functionally Graded Materials Conference (FGM-IX), AIP-973:410–415. American Institute of Physics, Melville, NY.
50.
go back to reference Hilton, H. H., Lee,D. H., & Merrett,C. G. (2009). Wing torsional divergence avoidance through designer viscoelastic material properties and tailored aero-servo-controls. In Proceedings International Forum on Aeroelasticity and Structural Dynamics, Paper IFASD-2009-146. Reston, VA. Hilton, H. H., Lee,D. H., & Merrett,C. G. (2009). Wing torsional divergence avoidance through designer viscoelastic material properties and tailored aero-servo-controls. In Proceedings International Forum on Aeroelasticity and Structural Dynamics, Paper IFASD-2009-146. Reston, VA.
51.
go back to reference Hilton, H. H. (2009). A novel approach to structural analysis: Designer/engineered viscoelastic materials vs. ‘off the shelf’ property selections. Journal of Vacuum Technology and Coating, 10, 23–29. Hilton, H. H. (2009). A novel approach to structural analysis: Designer/engineered viscoelastic materials vs. ‘off the shelf’ property selections. Journal of Vacuum Technology and Coating, 10, 23–29.
52.
go back to reference Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2942. Reston, VA. Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2942. Reston, VA.
53.
go back to reference Hilton, H. H., Lee, D. H., & Velicki, A. (2010). Designer composite materials to alleviate aeroelastic and aero-viscoelastic wing and panel problems (torsional divergence, flutter, aero-acoustics. In Aerospace Flutter and Dynamics Council Conference. NASA Langley, VA. Hilton, H. H., Lee, D. H., & Velicki, A. (2010). Designer composite materials to alleviate aeroelastic and aero-viscoelastic wing and panel problems (torsional divergence, flutter, aero-acoustics. In Aerospace Flutter and Dynamics Council Conference. NASA Langley, VA.
54.
go back to reference Lee, D. H., Hilton, H. H., & Velicki, A. (2011). Optimum designer materials and geometries for stitched composites. Proceedings 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2011-1910. Reston, VA. Lee, D. H., Hilton, H. H., & Velicki, A. (2011). Optimum designer materials and geometries for stitched composites. Proceedings 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2011-1910. Reston, VA.
55.
go back to reference Hilton, H. H. (2014). Designer viscoelastic materials for minimizing vibration effects. In Proceedings 19th Symposium on Vibrations, Shock and Noise (VISHNO), Paper 135. Aix-en-Provence. Hilton, H. H. (2014). Designer viscoelastic materials for minimizing vibration effects. In Proceedings 19th Symposium on Vibrations, Shock and Noise (VISHNO), Paper 135. Aix-en-Provence.
56.
go back to reference Hilton, H. H., & D’Urso, S. (2014). Astro-elastic and astro-viscoelastic system engineering: Optimum solar sail configurations based on astrodynamics, designer materials, sizing and geometry. In Proceedings AIAA SPACE 2014 Conference, AIAA Paper 2014-4203. San Diego, CA. doi:10.2514/6.2014-4203. Hilton, H. H., & D’Urso, S. (2014). Astro-elastic and astro-viscoelastic system engineering: Optimum solar sail configurations based on astrodynamics, designer materials, sizing and geometry. In Proceedings AIAA SPACE 2014 Conference, AIAA Paper 2014-4203. San Diego, CA. doi:10.​2514/​6.​2014-4203.
57.
go back to reference Pedersen, P. (Ed.). (1992). Optimal design with advanced materials: The Frithiof Niordson Volume: Proceedings of the IUTAM Symposium on Optimal Design with Advanced Materials. Lyngby. Pedersen, P. (Ed.). (1992). Optimal design with advanced materials: The Frithiof Niordson Volume: Proceedings of the IUTAM Symposium on Optimal Design with Advanced Materials. Lyngby.
58.
go back to reference Vasiliev, V. V., & Gürdal, Z. (Eds.). (1999). Optimal design: Theory and applications to materials and structures. Lancaster, PA: Technomic Publishing Co. Vasiliev, V. V., & Gürdal, Z. (Eds.). (1999). Optimal design: Theory and applications to materials and structures. Lancaster, PA: Technomic Publishing Co.
61.
go back to reference Hilton, H. H., Lee, D. H., & Merrett, C. G. (2009). Novel protocols of matching optimized designer aero-servo-controls with engineered viscoelastic materials. In Proceedings IV ECCOMAS SMART-09, Paper ID038. Porto. Hilton, H. H., Lee, D. H., & Merrett, C. G. (2009). Novel protocols of matching optimized designer aero-servo-controls with engineered viscoelastic materials. In Proceedings IV ECCOMAS SMART-09, Paper ID038. Porto.
62.
go back to reference Merrett, C. G., & Hilton, H. H. (2009). Panel flutter and aerodynamic noise attenuation through aero-servo-viscoelastic controls. In Proceedings 50th AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2009-2512. Reston, VA. Merrett, C. G., & Hilton, H. H. (2009). Panel flutter and aerodynamic noise attenuation through aero-servo-viscoelastic controls. In Proceedings 50th AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2009-2512. Reston, VA.
63.
go back to reference Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer/tailored stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2010-2942. Reston, VA. Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer/tailored stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2010-2942. Reston, VA.
64.
go back to reference Van Krevelen, D. W. (1990). Properties of polymers—Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (3rd ed.). Amsterdam: Elsevier. Van Krevelen, D. W. (1990). Properties of polymers—Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (3rd ed.). Amsterdam: Elsevier.
67.
go back to reference Spencer, N. D. (2012). Tailoring surfaces: Modifying surface composition and structure for applications in tribology, biology and catalysis. Singapore: World Scientific. Spencer, N. D. (2012). Tailoring surfaces: Modifying surface composition and structure for applications in tribology, biology and catalysis. Singapore: World Scientific.
69.
go back to reference Brinkmeyer, A. W., Santer, M., Pirrera, A., & Weaver, P. M. (2012). Morphing composite panel with pseudo-bistable viscoelastic behavior. In SEM XII International Congress & Exposition on Experimental and Applied Mechanics, SEM Paper 404. Brinkmeyer, A. W., Santer, M., Pirrera, A., & Weaver, P. M. (2012). Morphing composite panel with pseudo-bistable viscoelastic behavior. In SEM XII International Congress & Exposition on Experimental and Applied Mechanics, SEM Paper 404.
70.
go back to reference Boisse, P. (Ed.). (2011). Composite reinforcements for optimum performance. Cambridge, UK: Woodhead Publishing. Boisse, P. (Ed.). (2011). Composite reinforcements for optimum performance. Cambridge, UK: Woodhead Publishing.
71.
go back to reference Liebeck, R. H. (1973). A class of airfoils designed for high lift in incompressible flow. Journal of Aircraft, 10, 610–617.CrossRef Liebeck, R. H. (1973). A class of airfoils designed for high lift in incompressible flow. Journal of Aircraft, 10, 610–617.CrossRef
72.
go back to reference Liebeck, R. H., & Ormsbee, A. L. (1970). Optimization of airfoils for maximum lift. Journal of Aircraft, 7, 409–415.CrossRef Liebeck, R. H., & Ormsbee, A. L. (1970). Optimization of airfoils for maximum lift. Journal of Aircraft, 7, 409–415.CrossRef
73.
go back to reference Liebeck, R. H. (1978). Design of subsonic airfoils for high lift. Journal of Aircraft, 15, 547–561.CrossRef Liebeck, R. H. (1978). Design of subsonic airfoils for high lift. Journal of Aircraft, 15, 547–561.CrossRef
74.
go back to reference Adkins, C. N., & Liebeck, R. H. (1983). Design of optimum propellers. In AIAA Paper AIAA-1983-190. Adkins, C. N., & Liebeck, R. H. (1983). Design of optimum propellers. In AIAA Paper AIAA-1983-190.
75.
go back to reference Weber, J. (1955). The calculation of the pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution. In R & M No. 3026, R.A.E. Report Aero. 2548. Weber, J. (1955). The calculation of the pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution. In R & M No. 3026, R.A.E. Report Aero. 2548.
76.
go back to reference Weisshaar, T. A. (2006). Induced drag reduction using aeroelastic tailoring with adaptive control surfaces. Journal of Aircraft, 43, 157–164.CrossRef Weisshaar, T. A. (2006). Induced drag reduction using aeroelastic tailoring with adaptive control surfaces. Journal of Aircraft, 43, 157–164.CrossRef
77.
go back to reference Volpe, G. (1990). Inverse airfoil design: A classical approach updated for transonic flow. Progress in Astronautics and Aeronautics, 125, 191–215 (AIAA, Reston, VA). Volpe, G. (1990). Inverse airfoil design: A classical approach updated for transonic flow. Progress in Astronautics and Aeronautics, 125, 191–215 (AIAA, Reston, VA).
78.
go back to reference Volpe, G. (1983). The inverse design of closed airfoils in transonic flow. In AIAA Paper 1983-504. Volpe, G. (1983). The inverse design of closed airfoils in transonic flow. In AIAA Paper 1983-504.
79.
go back to reference Adkins, C. N., & Liebeck, R. H. (1994). Design of optimum propellers. Journal of Propulsion and Power, 10, 676–682.CrossRef Adkins, C. N., & Liebeck, R. H. (1994). Design of optimum propellers. Journal of Propulsion and Power, 10, 676–682.CrossRef
80.
go back to reference Giguère, P., & Selig, M. S. (1998). New airfoils for small horizontal axis wind turbines. ASME Journal of Solar Energy Engineering, 120, 108–114.CrossRef Giguère, P., & Selig, M. S. (1998). New airfoils for small horizontal axis wind turbines. ASME Journal of Solar Energy Engineering, 120, 108–114.CrossRef
81.
go back to reference Selig, M. S., & Guglielmo, J. J. (1997). High-lift low Reynolds number airfoil design. Journal of Aircraft, 34, 72–79.CrossRef Selig, M. S., & Guglielmo, J. J. (1997). High-lift low Reynolds number airfoil design. Journal of Aircraft, 34, 72–79.CrossRef
82.
go back to reference Gopalarathnam, A., Broughton, B. A., McGranahan, B. D., & Selig, M. S. (2003). Design of low Reynolds number airfoils with trips. Journal of Aircraft, 40, 768–775.CrossRef Gopalarathnam, A., Broughton, B. A., McGranahan, B. D., & Selig, M. S. (2003). Design of low Reynolds number airfoils with trips. Journal of Aircraft, 40, 768–775.CrossRef
84.
go back to reference Eppler, R. (1900). Airfoil design and data. Berlin: Springer. Eppler, R. (1900). Airfoil design and data. Berlin: Springer.
86.
go back to reference Selig, M. S., & Maughmer, M. D. (1992). Generalized multi-point inverse airfoil design. AIAA Journal, 30, 2618–2625.CrossRef Selig, M. S., & Maughmer, M. D. (1992). Generalized multi-point inverse airfoil design. AIAA Journal, 30, 2618–2625.CrossRef
87.
go back to reference Maughmer, M. D., & Somers, D. M. (1989). Design and experimental results for a high-altitude, long-endurance airfoil. Journal of Aircraft, 26, 148–153.CrossRef Maughmer, M. D., & Somers, D. M. (1989). Design and experimental results for a high-altitude, long-endurance airfoil. Journal of Aircraft, 26, 148–153.CrossRef
90.
go back to reference Marzat, J., Piet-Lahander, H., Damongeot, F., & Walters, E. (2012). Model-based fault analysis for aerospace systems: A survey. Journal of Aerospace Engineering, 226, 1329–1360. Marzat, J., Piet-Lahander, H., Damongeot, F., & Walters, E. (2012). Model-based fault analysis for aerospace systems: A survey. Journal of Aerospace Engineering, 226, 1329–1360.
91.
go back to reference Benavides, E. M. (2012). Advanced engineering design—An integrated approach. Philadelphia: Woodland Publishing. Benavides, E. M. (2012). Advanced engineering design—An integrated approach. Philadelphia: Woodland Publishing.
93.
go back to reference Raymer, D. P. (2006). Aircraft design: A conceptual approach (4th ed.). Reston, VA: AIAA Educational Series. Raymer, D. P. (2006). Aircraft design: A conceptual approach (4th ed.). Reston, VA: AIAA Educational Series.
94.
go back to reference Torenbeek, E. (2013). Advanced aircraft design: Conceptual design, technology and optimization of subsonic civil airplanes. New York: Wiley.CrossRef Torenbeek, E. (2013). Advanced aircraft design: Conceptual design, technology and optimization of subsonic civil airplanes. New York: Wiley.CrossRef
95.
go back to reference Sadraey, M. H. (2012). Aircraft design: A systems engineering approach. New York: Wiley.CrossRef Sadraey, M. H. (2012). Aircraft design: A systems engineering approach. New York: Wiley.CrossRef
96.
go back to reference Carichner, G. E., & Nicholai, L. M. (1984 & 2013). Fundamentals of aircraft and airship design—Airship design and case studies (Vol. 1 & 2). AIAA Education Series, Renton, VA. Carichner, G. E., & Nicholai, L. M. (1984 & 2013). Fundamentals of aircraft and airship designAirship design and case studies (Vol. 1 & 2). AIAA Education Series, Renton, VA.
97.
go back to reference Kundu, A. (2010). Aircraft design. West Nyack, NY: Cambridge University Press.CrossRef Kundu, A. (2010). Aircraft design. West Nyack, NY: Cambridge University Press.CrossRef
98.
go back to reference Fielding, J. P. (1999). Introduction to aircraft design. West Nyack, NY: Cambridge University Press.CrossRef Fielding, J. P. (1999). Introduction to aircraft design. West Nyack, NY: Cambridge University Press.CrossRef
99.
go back to reference Teichmann, F. K. (1944). Airplane design manual. New York: Pitman. Teichmann, F. K. (1944). Airplane design manual. New York: Pitman.
100.
go back to reference Volodin, V. V., Lyseitsev, N. K., & Maximovich, V. Z. (1985). Idiosyncrasies of designing IC powered airplanes for vertical takeoff and landing. Mashinosfroenie, Moscow (in Russian). Volodin, V. V., Lyseitsev, N. K., & Maximovich, V. Z. (1985). Idiosyncrasies of designing IC powered airplanes for vertical takeoff and landing. Mashinosfroenie, Moscow (in Russian).
101.
go back to reference Austin, R. (2010). Unmanned aircraft systems—UAVs design, development and deployment (AIAA educational series). New York: John Wiley & Sons.CrossRef Austin, R. (2010). Unmanned aircraft systems—UAVs design, development and deployment (AIAA educational series). New York: John Wiley & Sons.CrossRef
102.
go back to reference Moir, I., & Seabridge, A. (2013). Design and development of aircraft systems (2nd ed.). New York: John Wiley & Sons. Moir, I., & Seabridge, A. (2013). Design and development of aircraft systems (2nd ed.). New York: John Wiley & Sons.
103.
go back to reference Nicolai, L. M. (1984). Fundamentals of aircraft design. Dayton, OH: METS (rev ed.). Nicolai, L. M. (1984). Fundamentals of aircraft design. Dayton, OH: METS (rev ed.).
104.
go back to reference Braha, D., Minai, A. A., & Ben-Yam, Y. (Eds.). (2006). Complex engineered systems. New York: Springer. Braha, D., Minai, A. A., & Ben-Yam, Y. (Eds.). (2006). Complex engineered systems. New York: Springer.
105.
go back to reference Ferman, M. A. (2011). A wing design method for aerospace students and home builders—Strength, weight, flutter, divergence, buckling, deflection and twist. Bloomington, IN: Trafford Publishing. Ferman, M. A. (2011). A wing design method for aerospace students and home builders—Strength, weight, flutter, divergence, buckling, deflection and twist. Bloomington, IN: Trafford Publishing.
106.
go back to reference Shanley, F. R. (1952). Weight-strength analysis of aircraft structures. New York: Dover. Shanley, F. R. (1952). Weight-strength analysis of aircraft structures. New York: Dover.
107.
go back to reference Dahan, E., Herman, Z. A. C., Procaccino, C. T., Wang, T., Bandyopadhyay, S., Ahern, D., et al. (2013). Integration into system functionality and decomposition as an extension to previous Mars exploration studies. In AIAA SPACE 2013 Conference & Exposition, AIAA Paper ID 1661909. San Diego, CA. Dahan, E., Herman, Z. A. C., Procaccino, C. T., Wang, T., Bandyopadhyay, S., Ahern, D., et al. (2013). Integration into system functionality and decomposition as an extension to previous Mars exploration studies. In AIAA SPACE 2013 Conference & Exposition, AIAA Paper ID 1661909. San Diego, CA.
108.
go back to reference Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I—Modelling, state space analysis, stability and robustness. New York: Springer Verlag. ISBN 9783540441250.CrossRef Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I—Modelling, state space analysis, stability and robustness. New York: Springer Verlag. ISBN 9783540441250.CrossRef
109.
go back to reference Klein, V., & Morelli, E. A. (2006). Aircraft system identification: Theory and practice. AIAA Education Series, Reston, VA. Klein, V., & Morelli, E. A. (2006). Aircraft system identification: Theory and practice. AIAA Education Series, Reston, VA.
110.
go back to reference Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51, 2049–2075.CrossRef Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51, 2049–2075.CrossRef
111.
go back to reference D’Urso, S. J., & Sivier, K. R. (1991). An example of industrial/interaction with undergraduate aircraft design program. American Institute of Aeronautics and Astronautics, AIAA Paper 91-3116. D’Urso, S. J., & Sivier, K. R. (1991). An example of industrial/interaction with undergraduate aircraft design program. American Institute of Aeronautics and Astronautics, AIAA Paper 91-3116.
112.
go back to reference Sivier, K. R., & D’Urso, S. J. (1994). Tauchi sizing experiments in the aircraft conceptual design process. American Institute of Aeronautics and Astronautics, AIAA Paper ICAS – 94.1.8.5. Sivier, K. R., & D’Urso, S. J. (1994). Tauchi sizing experiments in the aircraft conceptual design process. American Institute of Aeronautics and Astronautics, AIAA Paper ICAS – 94.1.8.5.
113.
go back to reference Park, H.-U., Chung, J., & Neufeld, D. (2016). Uncertainty based aircraft derivative design for requirement changes. The Aeronautical Journal, 120, 375–389.CrossRef Park, H.-U., Chung, J., & Neufeld, D. (2016). Uncertainty based aircraft derivative design for requirement changes. The Aeronautical Journal, 120, 375–389.CrossRef
114.
go back to reference Teichmann, F. K. (1939). Airplane Design Manual. New York: Pitman. Teichmann, F. K. (1939). Airplane Design Manual. New York: Pitman.
115.
go back to reference Cassidy, P. F., Gatzke, T. D., & Vaporean, C. N. (2008). Integrating synthesis and simulation for conceptual design. AIAA Paper 2008-1443. Cassidy, P. F., Gatzke, T. D., & Vaporean, C. N. (2008). Integrating synthesis and simulation for conceptual design. AIAA Paper 2008-1443.
116.
go back to reference Long, D., & Scott, Z. (2011). A primer for model-based systems engineering (2nd ed.). Blacksburg, VA: Vitech Corp. Long, D., & Scott, Z. (2011). A primer for model-based systems engineering (2nd ed.). Blacksburg, VA: Vitech Corp.
117.
go back to reference D’Urso, S. J. (1990). Configuring tactical aircraft. AIAA Paper 90-3305. D’Urso, S. J. (1990). Configuring tactical aircraft. AIAA Paper 90-3305.
118.
go back to reference Howe, D. (2004). Aircraft loading and structural layout. AIAA Education Series, AIAA, Reston, VA. Howe, D. (2004). Aircraft loading and structural layout. AIAA Education Series, AIAA, Reston, VA.
119.
go back to reference Maier, M. W., & Rechtin, E. (2000). The Art of Systems Architecting (2nd ed.). Boca Raton: CRC Press. Maier, M. W., & Rechtin, E. (2000). The Art of Systems Architecting (2nd ed.). Boca Raton: CRC Press.
120.
go back to reference Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4), 122–128.CrossRef Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4), 122–128.CrossRef
121.
122.
go back to reference Raymer, D. P. (1992). Aircraft design: A conceptual approach. Reston, VA: American Institute of Aeronautics and Astronautics. Raymer, D. P. (1992). Aircraft design: A conceptual approach. Reston, VA: American Institute of Aeronautics and Astronautics.
123.
go back to reference Nadeau, M. C., Kar, A., Roth, R., & Kirchain, R. (2010). A dynamic process-based cost modeling approach to understand learning effects in manufacturing. International Journal of Production Economics, 128, 223–234.CrossRef Nadeau, M. C., Kar, A., Roth, R., & Kirchain, R. (2010). A dynamic process-based cost modeling approach to understand learning effects in manufacturing. International Journal of Production Economics, 128, 223–234.CrossRef
124.
go back to reference Diewert, W. E. (1974). Applications of duality theory”, Frontiers of Quantitative Economics 2:106–176. Amsterdam: North-Holland Publishing Company. Diewert, W. E. (1974). Applications of duality theory”, Frontiers of Quantitative Economics 2:106–176. Amsterdam: North-Holland Publishing Company.
125.
go back to reference Korzybski, A. (1958). Science and sanity: An introduction to non-aristotelian systems and general semantics (4th ed.). Lakeville, CT: Institute of General Semantics. Korzybski, A. (1958). Science and sanity: An introduction to non-aristotelian systems and general semantics (4th ed.). Lakeville, CT: Institute of General Semantics.
126.
go back to reference Heisenberg, W. (1962). Physics and philosophy: The revolution in modern science. New York: Harper. Heisenberg, W. (1962). Physics and philosophy: The revolution in modern science. New York: Harper.
127.
go back to reference Rish, I., Cecchi, G. A., Lozano, A., & Niculescu-Mizil, A. (Eds.). (2014). Practical applications of sparse modeling. Cambridge, MA: MIT Press. Rish, I., Cecchi, G. A., Lozano, A., & Niculescu-Mizil, A. (Eds.). (2014). Practical applications of sparse modeling. Cambridge, MA: MIT Press.
130.
go back to reference Tarantola, A. (2005). Inverse problem theory and methods for model parameters estimation. Philadelphia, PA: SIAM.CrossRef Tarantola, A. (2005). Inverse problem theory and methods for model parameters estimation. Philadelphia, PA: SIAM.CrossRef
131.
go back to reference Jones, R. M. (2015). Design of Composite Structures. Blacksburg, VA: Bull Ridge Publishing. Jones, R. M. (2015). Design of Composite Structures. Blacksburg, VA: Bull Ridge Publishing.
132.
go back to reference Hilton, H. H., & Ariaratnam, S. T. (1993). Invariant anisotropic large deformation deterministic and stochastic combined load failure criteria. International Journal of Solids and Structures, 31, 3285–3293.CrossRef Hilton, H. H., & Ariaratnam, S. T. (1993). Invariant anisotropic large deformation deterministic and stochastic combined load failure criteria. International Journal of Solids and Structures, 31, 3285–3293.CrossRef
134.
go back to reference Anonymous. (2001). Systems engineering fundamentals. Fort Belvoir, VA: Defense Acquisition University Press. Anonymous. (2001). Systems engineering fundamentals. Fort Belvoir, VA: Defense Acquisition University Press.
135.
go back to reference Wasson, C. S. (2005). System analysis, design, and development: Concepts, principles, and practices. Hoboken, NJ: Wiley-Interscience.CrossRef Wasson, C. S. (2005). System analysis, design, and development: Concepts, principles, and practices. Hoboken, NJ: Wiley-Interscience.CrossRef
136.
go back to reference Lagrange, J.-L. (1788). Mécanique analytique. Paris: Gauthier-Villars et fils. Lagrange, J.-L. (1788). Mécanique analytique. Paris: Gauthier-Villars et fils.
137.
go back to reference Lagrange, J.-L. (1811). Mécanique analytique. Courcier, Paris. (2009) Reissued by Cambridge University Press, New York. ISBN: 978-1-108-00174-8. Lagrange, J.-L. (1811). Mécanique analytique. Courcier, Paris. (2009) Reissued by Cambridge University Press, New York. ISBN: 978-1-108-00174-8.
138.
go back to reference Lagrange, J.-L. (1762). Essai d’une nouvelle methode pour déterminer les maxima et les minima des formules integrales indéfinies. Mélanges de philosophie et de mathématique de la Société Royale de Turin, 1, 173–195. Lagrange, J.-L. (1762). Essai d’une nouvelle methode pour déterminer les maxima et les minima des formules integrales indéfinies. Mélanges de philosophie et de mathématique de la Société Royale de Turin, 1, 173–195.
139.
go back to reference Komzsik, L. (2014). Applied calculus of variations for engineers (2nd ed.). Boca Raton, FL: CRC Press.CrossRef Komzsik, L. (2014). Applied calculus of variations for engineers (2nd ed.). Boca Raton, FL: CRC Press.CrossRef
142.
go back to reference Prony, G. C. F. M. R., & Baron de. (1795). Essai experimental et analytique. Journal de l’École Polytechnique de Paris, 1, 24–76. Prony, G. C. F. M. R., & Baron de. (1795). Essai experimental et analytique. Journal de l’École Polytechnique de Paris, 1, 24–76.
143.
go back to reference Alfrey, T., Jr. (1948). Mechanical behavior of high polymers. New York: Interscience Publishers, Inc. Alfrey, T., Jr. (1948). Mechanical behavior of high polymers. New York: Interscience Publishers, Inc.
144.
go back to reference Read, W. T. (1950). Stress analysis for compressible viscoelastic materials. Journal of Applied Physics, 21, 671–674.CrossRef Read, W. T. (1950). Stress analysis for compressible viscoelastic materials. Journal of Applied Physics, 21, 671–674.CrossRef
145.
go back to reference Freudenthal, A. M. (1950). The inelastic behavior of engineering materials and structures. New York: John Wiley & Sons. Freudenthal, A. M. (1950). The inelastic behavior of engineering materials and structures. New York: John Wiley & Sons.
146.
go back to reference Aklonis, J. J., MacKnight, W. J., & Shen, M. C. (1972). Introduction to polymer viscoelasticity. New York: Wiley. Aklonis, J. J., MacKnight, W. J., & Shen, M. C. (1972). Introduction to polymer viscoelasticity. New York: Wiley.
147.
go back to reference Aklonis, J. J., & MacKnight, W. J. (1983). Introduction to polymer viscoelasticity. New York: Wiley. Aklonis, J. J., & MacKnight, W. J. (1983). Introduction to polymer viscoelasticity. New York: Wiley.
148.
go back to reference Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An introduction to rheology. Amsterdam: Elsevier. Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An introduction to rheology. Amsterdam: Elsevier.
149.
go back to reference Bartenev, G. M., & Zuyev, Y. S. (1968). Strength and failure of viscoelastic materials. Oxford: Pergamon Press. Bartenev, G. M., & Zuyev, Y. S. (1968). Strength and failure of viscoelastic materials. Oxford: Pergamon Press.
150.
go back to reference Bažant, Z. P. (Ed.). (1988). Mathematical modeling of creep and shrinkage of concrete. New York: John Wiley and Sons. Bažant, Z. P. (Ed.). (1988). Mathematical modeling of creep and shrinkage of concrete. New York: John Wiley and Sons.
151.
go back to reference Bažant, Z. P., & Cedolin, L. (1991). Stability of structures—Elastic, inelastic, fracture and damage theories. New York: Oxford University Press. Bažant, Z. P., & Cedolin, L. (1991). Stability of structures—Elastic, inelastic, fracture and damage theories. New York: Oxford University Press.
152.
go back to reference Bergen, J. T. (1960). Viscoelasticity; phenomenological aspects. New York: Academic. Bergen, J. T. (1960). Viscoelasticity; phenomenological aspects. New York: Academic.
153.
go back to reference Betten, J. (2005). Creep mechanics (2nd ed.). New York: Springer. Betten, J. (2005). Creep mechanics (2nd ed.). New York: Springer.
154.
go back to reference Biot, M. A. (1965). Mechanics of incremental deformations. New York: John Wiley & Sons. Biot, M. A. (1965). Mechanics of incremental deformations. New York: John Wiley & Sons.
155.
go back to reference Bland, D. R. (1960). The theory of linear viscoelasticity. New York: Pergamon Press. Bland, D. R. (1960). The theory of linear viscoelasticity. New York: Pergamon Press.
156.
go back to reference Brinson, H. F., & Catherine Brinson, L. (2008). Polymer engineering science and viscoelasticity: An introduction. New York: Springer.CrossRef Brinson, H. F., & Catherine Brinson, L. (2008). Polymer engineering science and viscoelasticity: An introduction. New York: Springer.CrossRef
157.
go back to reference Christensen, R. M. (1982). Theory of viscoelasticity—An introduction (2nd ed.). New York: Academic. Christensen, R. M. (1982). Theory of viscoelasticity—An introduction (2nd ed.). New York: Academic.
158.
go back to reference Drozdov, A. D., & Kolmanovski, V. B. (1994). Stability in viscoelasticity. Amsterdam: North-Holland. Drozdov, A. D., & Kolmanovski, V. B. (1994). Stability in viscoelasticity. Amsterdam: North-Holland.
159.
go back to reference Drozdov, A. D. (1996). Finite elasticity and viscoelasticity—A course in nonlinear mechanics of solids. Singapore: World Scientific.CrossRef Drozdov, A. D. (1996). Finite elasticity and viscoelasticity—A course in nonlinear mechanics of solids. Singapore: World Scientific.CrossRef
160.
go back to reference Drozdov, A. D. (1998). Mechanics of viscoelastic solids. New York: John Wiley & Sons. Drozdov, A. D. (1998). Mechanics of viscoelastic solids. New York: John Wiley & Sons.
161.
go back to reference Drozdov, A. D. (1998). Viscoelastic structures mechanics of growth and aging. San Diego: Academic. Drozdov, A. D. (1998). Viscoelastic structures mechanics of growth and aging. San Diego: Academic.
162.
go back to reference Eringen, A. C. (1962). Nonlinear theory of continuous media. New York: McGraw-Hill. Eringen, A. C. (1962). Nonlinear theory of continuous media. New York: McGraw-Hill.
163.
go back to reference Fabrizio, M., & Morro, A. (1992). Mathematical problems in linear viscoelasticity. Philadelphia, PA: SIAM.CrossRef Fabrizio, M., & Morro, A. (1992). Mathematical problems in linear viscoelasticity. Philadelphia, PA: SIAM.CrossRef
164.
go back to reference Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: John Wiley & Sons. Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: John Wiley & Sons.
165.
go back to reference Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear materials. Amsterdam: North-Holland Publ. Co. Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear materials. Amsterdam: North-Holland Publ. Co.
166.
go back to reference Flügge, W. (1967). Viscoelasticity. Waltham, MA: Blaisdell Pub. Co. Flügge, W. (1967). Viscoelasticity. Waltham, MA: Blaisdell Pub. Co.
167.
go back to reference Fung, Y. C. (1965). Foundations of solid mechanics. Englewood Cliffs, NJ: Prentice-Hall. Fung, Y. C. (1965). Foundations of solid mechanics. Englewood Cliffs, NJ: Prentice-Hall.
168.
go back to reference Golden, J. M., & Graham, C. A. C. (1988). Boundary value problems in linear viscoelasticity. Berlin: Springer Verlag.CrossRef Golden, J. M., & Graham, C. A. C. (1988). Boundary value problems in linear viscoelasticity. Berlin: Springer Verlag.CrossRef
169.
go back to reference Gross, B. (1953). Mathematical structure of the theories of viscoelasticity. Paris: Hermann & Cie. Gross, B. (1953). Mathematical structure of the theories of viscoelasticity. Paris: Hermann & Cie.
170.
go back to reference Gunasekaran, S., & Mehmet Ak, M. (2003). Cheese rheology and texture. Boca Raton, FL: CRC Press. Gunasekaran, S., & Mehmet Ak, M. (2003). Cheese rheology and texture. Boca Raton, FL: CRC Press.
171.
go back to reference Gurtin, M. E., & Sternberg, E. (1962). On the linear theory of viscoelasticity. Archive for Rational Mechanics and Analysis, 11, 291–356.CrossRef Gurtin, M. E., & Sternberg, E. (1962). On the linear theory of viscoelasticity. Archive for Rational Mechanics and Analysis, 11, 291–356.CrossRef
172.
go back to reference Hilton, H. H. (1964). An introduction to viscoelastic analysis. In E. Baer (Ed.), Engineering design for plastics (pp. 199–276). New York: Reinhold Publishing Corp. Hilton, H. H. (1964). An introduction to viscoelastic analysis. In E. Baer (Ed.), Engineering design for plastics (pp. 199–276). New York: Reinhold Publishing Corp.
173.
go back to reference Hilton, H. H., & Dong, S. B. (1964). An analogy for anisotropic, nonhomogeneous, linear viscoelasticity including thermal stresses (Development in mechanics, pp. 58–73). New York: Pergamon Press. Hilton, H. H., & Dong, S. B. (1964). An analogy for anisotropic, nonhomogeneous, linear viscoelasticity including thermal stresses (Development in mechanics, pp. 58–73). New York: Pergamon Press.
174.
go back to reference Hunter, S. C. (1960). Viscoelastic waves. Progress in Solid Mechanics, 1, 3–57. Hunter, S. C. (1960). Viscoelastic waves. Progress in Solid Mechanics, 1, 3–57.
175.
go back to reference Lakes, R. S. (1998). Viscoelastic solids. Boca Rotan: CRC Press. Lakes, R. S. (1998). Viscoelastic solids. Boca Rotan: CRC Press.
176.
go back to reference Lakes, R. S. (2009). Viscoelastic materials. New York: Cambridge University Press.CrossRef Lakes, R. S. (2009). Viscoelastic materials. New York: Cambridge University Press.CrossRef
177.
go back to reference Lazan, B. J. (1968). Damping of materials and members in structural mechanics. Oxford: Pergamon Press. Lazan, B. J. (1968). Damping of materials and members in structural mechanics. Oxford: Pergamon Press.
178.
go back to reference Le Tallec, P. (1990). Numerical analysis of viscoelastic problems. Berlin: Springer. Le Tallec, P. (1990). Numerical analysis of viscoelastic problems. Berlin: Springer.
179.
go back to reference Levi, F., & Pizzetti, G. (1951). Fluage, Plasticité, Précontrainte. Paris: Dunod. Levi, F., & Pizzetti, G. (1951). Fluage, Plasticité, Précontrainte. Paris: Dunod.
180.
go back to reference Lockett, F. J. (1972). Nonlinear viscoelastic solids. London: Academic. Lockett, F. J. (1972). Nonlinear viscoelastic solids. London: Academic.
181.
go back to reference Lodge, A. S., Renardy, M., & Nohel, J. A. (Eds.). (1985). Viscoelasticity and rheology. New York: Academic. Lodge, A. S., Renardy, M., & Nohel, J. A. (Eds.). (1985). Viscoelasticity and rheology. New York: Academic.
182.
go back to reference Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London: Imperial College Press.CrossRef Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London: Imperial College Press.CrossRef
183.
go back to reference Marques, S. P. C., & Creus, G. J. (2012). Computational viscoelasticity. Berlin: Springer.CrossRef Marques, S. P. C., & Creus, G. J. (2012). Computational viscoelasticity. Berlin: Springer.CrossRef
184.
go back to reference Nashif, A. D., Jones, D. I. G., & Henderson, J. P. (1985). Vibration damping. New York: John Wiley & Sons. Nashif, A. D., Jones, D. I. G., & Henderson, J. P. (1985). Vibration damping. New York: John Wiley & Sons.
185.
go back to reference Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Berlin: Springer.CrossRef Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Berlin: Springer.CrossRef
186.
go back to reference Renardy, M., Hrusa, W. J., & Nohel, J. A. (1987). Mathematical problems in viscoelasticity. Burnt Mill: Longmans Scientific and Technical Press. Renardy, M., Hrusa, W. J., & Nohel, J. A. (1987). Mathematical problems in viscoelasticity. Burnt Mill: Longmans Scientific and Technical Press.
187.
go back to reference Roland, C. M. (2011). Viscoelastic behavior of rubbery materials. New York: Oxford University Press.CrossRef Roland, C. M. (2011). Viscoelastic behavior of rubbery materials. New York: Oxford University Press.CrossRef
188.
go back to reference Salençon, J. (1983). Viscoélasticité. Paris: Presses ENPC. Salençon, J. (1983). Viscoélasticité. Paris: Presses ENPC.
189.
go back to reference Schowalter, W. R. (1978). Mechanics of non-Newtonian fluids. Oxford: Pergamon. Schowalter, W. R. (1978). Mechanics of non-Newtonian fluids. Oxford: Pergamon.
190.
go back to reference Scott-Blair, G. W. (1949). Survey of general and applied rheology. London: I. Pitman and Son. Scott-Blair, G. W. (1949). Survey of general and applied rheology. London: I. Pitman and Son.
191.
go back to reference Shaw, M. T., & MacKnight, W. J. (2005). Introduction to polymer viscoelasticity (3rd ed.). Hoboken, NJ: Wiley-Interscience.CrossRef Shaw, M. T., & MacKnight, W. J. (2005). Introduction to polymer viscoelasticity (3rd ed.). Hoboken, NJ: Wiley-Interscience.CrossRef
192.
go back to reference Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. New York: Springer.CrossRef Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. New York: Springer.CrossRef
193.
go back to reference Wineman, A. S., & Rajakopal, K. R. (2000). Mechanical response of polymers—An introduction. Cambridge: New York. Wineman, A. S., & Rajakopal, K. R. (2000). Mechanical response of polymers—An introduction. Cambridge: New York.
194.
go back to reference Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press. Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.
195.
go back to reference Allen, D. H., & Haisler, W. E. (1985). Introduction to aerospace analysis. New York: John Wiley & Sons. Allen, D. H., & Haisler, W. E. (1985). Introduction to aerospace analysis. New York: John Wiley & Sons.
196.
go back to reference Shanley, F. R., & Ryder, E. I. (1937). Stress ratios: The answer to the combined loading problem. Aviation, 36, 28–29, 43, 66, 69–70. Shanley, F. R., & Ryder, E. I. (1937). Stress ratios: The answer to the combined loading problem. Aviation, 36, 28–29, 43, 66, 69–70.
197.
go back to reference Lambros, J., Santare, M. H., Li, H., & Sapna, G. H. (1999). A novel technique for the fabrication of laboratory scale model functionally graded materials. Experimental Mechanics, 39, 184–190.CrossRef Lambros, J., Santare, M. H., Li, H., & Sapna, G. H. (1999). A novel technique for the fabrication of laboratory scale model functionally graded materials. Experimental Mechanics, 39, 184–190.CrossRef
198.
go back to reference Asiedu, Y., & Gu, P. (1998). State of the art review. International Journal of Production Research, 36, 37–41.CrossRef Asiedu, Y., & Gu, P. (1998). State of the art review. International Journal of Production Research, 36, 37–41.CrossRef
199.
go back to reference Xu, Y., Erkoyuncu, J. A., Bankole, O., Goh, Y. M., Cheung, W. M., Baguley, P., et al. (2012). Cost engineering for manufacturing: Current and future research. International Journal of Computer Integrated Manufacturing, 25, 300–314.CrossRef Xu, Y., Erkoyuncu, J. A., Bankole, O., Goh, Y. M., Cheung, W. M., Baguley, P., et al. (2012). Cost engineering for manufacturing: Current and future research. International Journal of Computer Integrated Manufacturing, 25, 300–314.CrossRef
200.
go back to reference Wei, W., & Hansen, M. (2005). Impact of aircraft size and seat availability on airlines’ demand and market share in duopoly markets. Transportation Research Part E: Logistics and Transportation Review, 41, 315–327.CrossRef Wei, W., & Hansen, M. (2005). Impact of aircraft size and seat availability on airlines’ demand and market share in duopoly markets. Transportation Research Part E: Logistics and Transportation Review, 41, 315–327.CrossRef
201.
go back to reference Inman, R. R. (1995). Shape characteristics of cost curves involving multiple shifts in automotive assembly plants. The Engineering Economist, 41(1), 53–67.CrossRef Inman, R. R. (1995). Shape characteristics of cost curves involving multiple shifts in automotive assembly plants. The Engineering Economist, 41(1), 53–67.CrossRef
202.
go back to reference Scanlan, J., Hill, T., & Marsh, R. (2002). Cost modeling for aircraft design optimization. Journal of Engineering Design, 13, 37–41.CrossRef Scanlan, J., Hill, T., & Marsh, R. (2002). Cost modeling for aircraft design optimization. Journal of Engineering Design, 13, 37–41.CrossRef
203.
go back to reference Layer, A., Brinke, E. T., Houten, F. V., Kals, H., & Haasis, S. (2002). Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing, 15(6), 499–510.CrossRef Layer, A., Brinke, E. T., Houten, F. V., Kals, H., & Haasis, S. (2002). Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing, 15(6), 499–510.CrossRef
204.
go back to reference Collopy, P. D., & Eames, D. J. H. (2001). Aerospace manufacturing cost prediction form a measure of part definition information (SAE Technical Paper 001-01-3004). Collopy, P. D., & Eames, D. J. H. (2001). Aerospace manufacturing cost prediction form a measure of part definition information (SAE Technical Paper 001-01-3004).
205.
go back to reference Hackman, S. T. (2008). Production Economics Integrating the Microeconomic and Engineering Perspectives. Berlin: Springer. Hackman, S. T. (2008). Production Economics Integrating the Microeconomic and Engineering Perspectives. Berlin: Springer.
206.
go back to reference Alchian, A. (1949) “An airframe production function,” Project RAND Paper P-108. Alchian, A. (1949) “An airframe production function,” Project RAND Paper P-108.
207.
go back to reference Minkowski, H. (1912). Geometrie der Zahlen. Leibzig: Teubner. Minkowski, H. (1912). Geometrie der Zahlen. Leibzig: Teubner.
208.
go back to reference Shaikh, A. (1987). Humbug production function. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The new Palgrave: A dictionary of economics (pp. 690–692). London: MacMillan Press. Shaikh, A. (1987). Humbug production function. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The new Palgrave: A dictionary of economics (pp. 690–692). London: MacMillan Press.
209.
go back to reference Simon, H. A. (1979). On parsimonious explanations of production relations. The Scandinavian Journal of Economics, 81(4), 459–474.CrossRef Simon, H. A. (1979). On parsimonious explanations of production relations. The Scandinavian Journal of Economics, 81(4), 459–474.CrossRef
210.
go back to reference Eiteman, W. J., & Guthrie, G. E. (1952). The shape of the average cost curve. The American Economic Review, 42, 832–838. Eiteman, W. J., & Guthrie, G. E. (1952). The shape of the average cost curve. The American Economic Review, 42, 832–838.
211.
go back to reference Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43, 225–250.CrossRef Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43, 225–250.CrossRef
212.
go back to reference Diewert, W. E. (1971). An application of the Shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79, 481–507.CrossRef Diewert, W. E. (1971). An application of the Shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79, 481–507.CrossRef
213.
go back to reference Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 45, 28–45.CrossRef Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 45, 28–45.CrossRef
214.
go back to reference Lau, L. J. (1986). Functional forms in econometric model building. Handbook of econometric, 3, 1515–1566.CrossRef Lau, L. J. (1986). Functional forms in econometric model building. Handbook of econometric, 3, 1515–1566.CrossRef
215.
go back to reference Curran, R., Kundu, A. K., Wright, J. M., Crosby, S., Price, M., Raghunathan, S., et al. (2006). Modeling of aircraft manufacturing cost at the concept stage. The International Journal of Advanced Manufacturing Technology, 31(3-4), 407–420.CrossRef Curran, R., Kundu, A. K., Wright, J. M., Crosby, S., Price, M., Raghunathan, S., et al. (2006). Modeling of aircraft manufacturing cost at the concept stage. The International Journal of Advanced Manufacturing Technology, 31(3-4), 407–420.CrossRef
216.
go back to reference Velicki, A., & Thrash, P. (2008). Advanced structural concept development using stitched composites. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AAIAA 2008-2329. Reston, VA. Velicki, A., & Thrash, P. (2008). Advanced structural concept development using stitched composites. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AAIAA 2008-2329. Reston, VA.
217.
go back to reference Yovanof, N. P., Velicki, A., & Li, V. (2009). Advanced structural stability analysis of a noncircular, BWB–shaped vehicle. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AIAA 2009-2452. Reston, VA. Yovanof, N. P., Velicki, A., & Li, V. (2009). Advanced structural stability analysis of a noncircular, BWB–shaped vehicle. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AIAA 2009-2452. Reston, VA.
218.
go back to reference Velicki, A., Thrash, P., & Jegley, D. (2009). Airframe development for the hybrid wing body aircraft. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Paper AIAA 2009-932. Reston, VA. Velicki, A., Thrash, P., & Jegley, D. (2009). Airframe development for the hybrid wing body aircraft. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Paper AIAA 2009-932. Reston, VA.
219.
go back to reference Hilton, H. H. (2012). Designer materials for controlling thermally excited viscoelastic lifting surface flutter. In Proceedings AIAA AFM Conference, AIAA Paper 2012-4952. Minneapolis, MN. Hilton, H. H. (2012). Designer materials for controlling thermally excited viscoelastic lifting surface flutter. In Proceedings AIAA AFM Conference, AIAA Paper 2012-4952. Minneapolis, MN.
220.
go back to reference Hamming, R. W. (1962). Numerical methods for scientists and engineers. New York: Dover. Hamming, R. W. (1962). Numerical methods for scientists and engineers. New York: Dover.
Metadata
Title
Designer Systems of Systems: A Rational Integrated Approach of System Engineering to Tailored Aerodynamics, Aeroelasticity, Aero-viscoelasticity, Stability, Control, Geometry, Materials, Structures, Propulsion, Performance, Sizing, Weight, Cost
Authors
Harry H. Hilton
Steven J. D’Urso
Noe Wiener
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-38756-7_3