Skip to main content
Top
Published in:

14-07-2023

Designing a Human Enterprise Management Model Using Deep Learning and Wireless Connectivity

Authors: Zhenxing Song, Di Zhang, Yue Wang

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the Internet era has progressed, more and more candidates are getting their recruitment information online. At the same time, a problem of information overload for human enterprise management services has arisen due to the massive volume of information. The main instrument to combat information overload in the Internet era has emerged as the human enterprise management system (HEMS). It can actively search through the information overload to discover and present the material that people are interested in. To ensure wide spread adaptability, the role of wireless communication for HEMS cannot be ignored. Wireless connectivity ensures that plethora of HEMS-related information can be accessed and managed effectively around the globe. To extract features from this massive information, deep learning can be used. There has not been much progress in the area of HEM systems as far as deep learning is concerned. This paper proposes an HDCF algorithm, which resolves the main issues of data sparseness and cold start in conventional collaborative filtering algorithms with the aid of deep learning feature extraction capabilities and wireless connectivity. The HDCF is essentially a recommendation algorithm that suggests to newly registered users the most prevalent and recent jobs in the system and employs an online algorithm based on content filtering to calculate the candidate’s rating for the most recently listed positions. According to the testing findings, the HDCF algorithm performed better than existing human business management algorithms like probability matrix factorization (PMF) and content-based filtering (CBF).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
5.
go back to reference Malinowski J, Keim T, Wendt O, Weitzel T (2006) “Matching People and Jobs: A Bilateral Recommendation Approach,” in Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Jan. pp. 137c–137c. doi: https://doi.org/10.1109/HICSS.2006.266 Malinowski J, Keim T, Wendt O, Weitzel T (2006) “Matching People and Jobs: A Bilateral Recommendation Approach,” in Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Jan. pp. 137c–137c. doi: https://​doi.​org/​10.​1109/​HICSS.​2006.​266
11.
go back to reference Longo F, Nicoletti L, Padovano A (2017) “Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context,” Computers & Industrial Engineering, vol. 113, pp. 144–159, Nov. doi: https://doi.org/10.1016/j.cie.2017.09.016 Longo F, Nicoletti L, Padovano A (2017) “Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context,” Computers & Industrial Engineering, vol. 113, pp. 144–159, Nov. doi: https://​doi.​org/​10.​1016/​j.​cie.​2017.​09.​016
14.
go back to reference Wang H, Wang N, Yeung D-Y (2015) “Collaborative Deep Learning for Recommender Systems,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’15. New York, NY, USA: Association for Computing Machinery, Aug. pp. 1235–1244. doi: https://doi.org/10.1145/2783258.2783273 Wang H, Wang N, Yeung D-Y (2015) “Collaborative Deep Learning for Recommender Systems,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’15. New York, NY, USA: Association for Computing Machinery, Aug. pp. 1235–1244. doi: https://​doi.​org/​10.​1145/​2783258.​2783273
17.
go back to reference Wu L, Shah S, Choi S, Tiwari M, Posse C (2014) “The Browsemaps: collaborative filtering at LinkedIn,” presented at the RSWeb@RecSys, Accessed: May 11, 2023. Wu L, Shah S, Choi S, Tiwari M, Posse C (2014) “The Browsemaps: collaborative filtering at LinkedIn,” presented at the RSWeb@RecSys, Accessed: May 11, 2023.
18.
go back to reference Shani G, Heckerman D, Brafman RI “An MDP-Based Recommender System” Shani G, Heckerman D, Brafman RI “An MDP-Based Recommender System”
22.
go back to reference Adomavicius G, Tuzhilin A (2005) “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions,”IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, Jun. doi: https://doi.org/10.1109/TKDE.2005.99 Adomavicius G, Tuzhilin A (2005) “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions,”IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, Jun. doi: https://​doi.​org/​10.​1109/​TKDE.​2005.​99
Metadata
Title
Designing a Human Enterprise Management Model Using Deep Learning and Wireless Connectivity
Authors
Zhenxing Song
Di Zhang
Yue Wang
Publication date
14-07-2023
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02173-z