Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 3/2021

26-10-2021 | Original Paper

Designing a three-level full-adder based on nano-scale quantum dot cellular automata

Authors: Saeid Seyedi, Nima Jafari Navimipour

Published in: Photonic Network Communications | Issue 3/2021

Login to get access
share
SHARE

Abstract

Some of the vital problems around the conventional CMOS technology are leakage-power consumption, physical-scalability limits, and short-channel effects. These deficiencies have led to many studies about nano-scale designs. Quantum dot cellular automata (QCA) is a potential answer in nanotechnology. Scholars have considered the four-dot squared cell as the main factor in the QCA. Also, a full-adder is a fundamental unit in every digital system. However, the importance of cell and area consumption limitation in circuit designing has been completely ignored in most of the related studies. Therefore, in this paper, we have offered a one-bit multi-layer full-adder cell. The practical accuracy of the proposed circuits has been assessed using QCADesigner. According to the obtained results and the design, the presented design has efficient cell usage against all the prior designs regarding cell counts and area occupation, leading to around 7% improvement in cell number than the common full-adder design. The simulation outcomes have also shown that the introduced design has excellent efficiency regarding cell and area aspects.
Literature
1.
go back to reference Bolhassani, A., Haghparast, M.: Optimized designs of reversible arithmetic logic unit. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1137–1146 (2017) Bolhassani, A., Haghparast, M.: Optimized designs of reversible arithmetic logic unit. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1137–1146 (2017)
2.
go back to reference Seyedi, S., Darbandi, M., and Navimipour, N. J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019) Seyedi, S., Darbandi, M., and Navimipour, N. J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)
3.
go back to reference Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003) Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)
4.
go back to reference Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006) Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006)
5.
go back to reference Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007) Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)
6.
go back to reference Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010) Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)
7.
go back to reference Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019) Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)
8.
go back to reference Seyedi, S., Ghanbari, A., Navimipour, N.J.: New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Mosc. Univ. Phys. Bull. 74(5), 494–501 (2019) Seyedi, S., Ghanbari, A., Navimipour, N.J.: New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Mosc. Univ. Phys. Bull. 74(5), 494–501 (2019)
9.
go back to reference Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency Computat. Pract. Exper. 31(13), e5070 (2019) Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency Computat. Pract. Exper. 31(13), e5070 (2019)
10.
go back to reference Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014) MathSciNetMATH Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014) MathSciNetMATH
11.
go back to reference Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys. Lett. A 326(5), 328–332 (2004) MathSciNetMATH Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys. Lett. A 326(5), 328–332 (2004) MathSciNetMATH
12.
go back to reference Hasani, B., Navimipour, N. J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 993–999 (2021) Hasani, B., Navimipour, N. J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 993–999 (2021)
14.
go back to reference Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(26), 176–183 (2007) Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(26), 176–183 (2007)
15.
go back to reference Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1295–1305 (2018) Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1295–1305 (2018)
16.
go back to reference Sarvaghad-Moghaddam, M., Orouji, A.A.: New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73(6), 125 (2019) Sarvaghad-Moghaddam, M., Orouji, A.A.: New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73(6), 125 (2019)
17.
go back to reference Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019) Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)
18.
go back to reference Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006) Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)
19.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993) Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)
21.
go back to reference Das, J.C., De, D.: Reversible priority encoder design and implementation using quantum-dot cellular automata. IET Quantum Commun. 1(2), 72–78 (2020) Das, J.C., De, D.: Reversible priority encoder design and implementation using quantum-dot cellular automata. IET Quantum Commun. 1(2), 72–78 (2020)
22.
go back to reference Ilanchezhian, P., Parvathi, R.: Nanotechnology based effective design approach for code converter circuits using QCA. Int. J. Comput. Appl. 69(8) (2013) Ilanchezhian, P., Parvathi, R.: Nanotechnology based effective design approach for code converter circuits using QCA. Int. J. Comput. Appl. 69(8) (2013)
23.
go back to reference Latha, K., Maharshi, M.N.: Design of adders using qca. Int. J. Adv. Eng. Technol. 6(4), 1750 (2013) Latha, K., Maharshi, M.N.: Design of adders using qca. Int. J. Adv. Eng. Technol. 6(4), 1750 (2013)
24.
go back to reference Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017) Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017)
25.
go back to reference Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017) Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017)
26.
go back to reference Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Optics 127(10), 4246–4249 (2016) Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Optics 127(10), 4246–4249 (2016)
27.
go back to reference Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017) Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017)
28.
go back to reference Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018) Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018)
29.
go back to reference Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012) Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012)
30.
go back to reference Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(9), 1535–1548 (2010) Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(9), 1535–1548 (2010)
31.
go back to reference Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019) Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019)
32.
go back to reference Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 57(4), 823–835 (2010) MathSciNetMATH Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 57(4), 823–835 (2010) MathSciNetMATH
33.
go back to reference Peskin, U., Abu-Hilu, M., Speiser, S.: Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24(1), 23–29 (2003) Peskin, U., Abu-Hilu, M., Speiser, S.: Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24(1), 23–29 (2003)
34.
go back to reference Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1060–1081 (2018) CrossRefMATH Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1060–1081 (2018) CrossRefMATH
35.
go back to reference Seyedi, S., Navimipour, N.J.: Designing a new 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 60, 2613–2626 (2021) CrossRefMATH Seyedi, S., Navimipour, N.J.: Designing a new 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 60, 2613–2626 (2021) CrossRefMATH
36.
go back to reference Navi, K., et al.: A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter. Microelectron. J. 40(10), 1441–1448 (2009) Navi, K., et al.: A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter. Microelectron. J. 40(10), 1441–1448 (2009)
37.
go back to reference Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theor. Appl. 44(7), 1351–1366 (2015) Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theor. Appl. 44(7), 1351–1366 (2015)
38.
go back to reference Ghosh, B., Singh, C., Salimath, A.K.: A novel approach of full adder and arithmetic logic unit design in quantum dot cellular automata. J. Low Pow. Electron. 9(4), 452–457 (2013) Ghosh, B., Singh, C., Salimath, A.K.: A novel approach of full adder and arithmetic logic unit design in quantum dot cellular automata. J. Low Pow. Electron. 9(4), 452–457 (2013)
39.
go back to reference Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014) MATH Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014) MATH
40.
go back to reference Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997) Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)
41.
go back to reference Wang, W., Walus, K., and Jullien, G. A.: “Quantum-dot cellular automata adders,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, 1, 461–464: IEEE Wang, W., Walus, K., and Jullien, G. A.: “Quantum-dot cellular automata adders,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, 1, 461–464: IEEE
42.
go back to reference Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Pow. Electron. 10(2), 259–271 (2014) Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Pow. Electron. 10(2), 259–271 (2014)
43.
go back to reference Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Optics 158, 243–256 (2017) Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Optics 158, 243–256 (2017)
44.
go back to reference Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004) Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)
45.
go back to reference Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016) Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)
46.
go back to reference Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014) Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)
47.
go back to reference Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011) Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011)
48.
go back to reference Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015) Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)
49.
go back to reference Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012) Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)
50.
go back to reference Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata MCA arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 714–717 (2011) Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata MCA arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 714–717 (2011)
51.
go back to reference Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006) Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006)
52.
go back to reference Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8(9), 1769–1775 (2011) Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8(9), 1769–1775 (2011)
53.
go back to reference Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10(5), 1137–1146 (2013) Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10(5), 1137–1146 (2013)
54.
go back to reference Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015) Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)
55.
go back to reference Sarmadi, S., Sayedsalehi, S., Fartash, M., Angizi, S.: A structured ultra-dense QCA one-bit full-adder cell. Quant. Matt. 5(1), 118–123 (2016) Sarmadi, S., Sayedsalehi, S., Fartash, M., Angizi, S.: A structured ultra-dense QCA one-bit full-adder cell. Quant. Matt. 5(1), 118–123 (2016)
56.
go back to reference Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018) MATH Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018) MATH
57.
go back to reference Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004) Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)
58.
go back to reference Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016) Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)
59.
go back to reference Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018) Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)
60.
go back to reference Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016) Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016)
61.
go back to reference Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010) Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)
62.
go back to reference Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009) MathSciNetMATH Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009) MathSciNetMATH
63.
go back to reference Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5(4), 202–208 (2015) Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5(4), 202–208 (2015)
Metadata
Title
Designing a three-level full-adder based on nano-scale quantum dot cellular automata
Authors
Saeid Seyedi
Nima Jafari Navimipour
Publication date
26-10-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 3/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00949-5