Skip to main content
Top

2021 | OriginalPaper | Chapter

Designing Novel Synthetic Grafts for Large Bone Defects: Experimental and Numerical Studies

Authors : Evangelos Daskalakis, Zhanyan Xu, Abdalla M. Omar, Fengyuan Liu, Anil A. Acar, Ali Fallah, Glen Cooper, Andrew Weightman, Gordon Blunn, Bahattin Koç, Paulo Bartolo

Published in: Experiments and Simulations in Advanced Manufacturing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Large bone defects, usually associated to victims of natural disasters, wars and severe accidents, represent a major clinical problem. The search for an effective and efficient treatment is a key area of research. Our group is exploring a novel and fully automatic approach to produce synthetic grafts anatomically designed to fit on the defect site and able to promote tissue regeneration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Haleem A, Javaid M, Khan R, Suman R (2020) 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma, 11, 118–124 dimensional printed poly(ε-caprolactone) scaffolds. Biofabrication 9:2 Haleem A, Javaid M, Khan R, Suman R (2020) 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma, 11, 118–124 dimensional printed poly(ε-caprolactone) scaffolds. Biofabrication 9:2
2.
go back to reference Gerdes S, Mostafavi A, Ramesh S, Memic A, Rivero I, Rao P, Tamayol A (2020) Process–structure–quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds. Tissue Eng Part A 26:271–291CrossRef Gerdes S, Mostafavi A, Ramesh S, Memic A, Rivero I, Rao P, Tamayol A (2020) Process–structure–quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds. Tissue Eng Part A 26:271–291CrossRef
3.
go back to reference Leonchuk SS, Novikov KI, Subramanyam KN, Shikhaleva NG, Pliev MK, Mundargi AV (2020) Management of severe congenital flexion deformity of the knee using Ilizarov method. J Pediatric Orthopaedics B 29:47–52CrossRef Leonchuk SS, Novikov KI, Subramanyam KN, Shikhaleva NG, Pliev MK, Mundargi AV (2020) Management of severe congenital flexion deformity of the knee using Ilizarov method. J Pediatric Orthopaedics B 29:47–52CrossRef
4.
go back to reference Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A (2020) Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskeletal Disorders 21:354CrossRef Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A (2020) Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskeletal Disorders 21:354CrossRef
5.
go back to reference Fragomen TA, Kurtz MA, Barclay RJ, Nguye J, Rozbruch RS (2018) A comparison of femoral lengthening methods favors the magnetic internal lengthening nail when compared with lengthening over a nail. HSS J 14:166–176CrossRef Fragomen TA, Kurtz MA, Barclay RJ, Nguye J, Rozbruch RS (2018) A comparison of femoral lengthening methods favors the magnetic internal lengthening nail when compared with lengthening over a nail. HSS J 14:166–176CrossRef
6.
go back to reference Al-Tamimi AA, Quental C, Folgado J, Peach C, Bartolo P (2018) Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol 19:693–699 Al-Tamimi AA, Quental C, Folgado J, Peach C, Bartolo P (2018) Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol 19:693–699
7.
go back to reference Seebah M, Fritz C, Kerschreiter J, Zah FM (2020) Shape accuracy and surface quality of additively manufactured, optimized, patient-specific bone plates. J Med Dev MED-20–1061 Seebah M, Fritz C, Kerschreiter J, Zah FM (2020) Shape accuracy and surface quality of additively manufactured, optimized, patient-specific bone plates. J Med Dev MED-20–1061
8.
go back to reference Yang W, Choi SW, Wong CM, Powcharoen W, Zhu W, Tsoi KJ, Chow M, Kwok K, Su Y (2020) Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: a comparative study. Annals Surg Oncol Yang W, Choi SW, Wong CM, Powcharoen W, Zhu W, Tsoi KJ, Chow M, Kwok K, Su Y (2020) Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: a comparative study. Annals Surg Oncol
9.
go back to reference Huang B, Aslan E, Jiang Z, Daskalakis E, Jiao M, Aldalbahic A, Vyas C, Bartolo P (2020) Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regenera-tion. Add Manuf 36:101452 Huang B, Aslan E, Jiang Z, Daskalakis E, Jiao M, Aldalbahic A, Vyas C, Bartolo P (2020) Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regenera-tion. Add Manuf 36:101452
10.
go back to reference Lin W, Chen M, Qu TLi J, Man Y (2020) Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 108:1311–1321 Lin W, Chen M, Qu TLi J, Man Y (2020) Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 108:1311–1321
11.
go back to reference Susmita B, Naboneeta S (2020) Natural medicinal compounds in bone tissue engineering. Trends Biotechnol 38:404–417CrossRef Susmita B, Naboneeta S (2020) Natural medicinal compounds in bone tissue engineering. Trends Biotechnol 38:404–417CrossRef
12.
go back to reference Wong MT, Lau WT, Li X, Fang C, Yeung K, Leung F (2014) Masquelet technique for treatment of posttraumatic bone defects. Scientific World J 2014:710302 Wong MT, Lau WT, Li X, Fang C, Yeung K, Leung F (2014) Masquelet technique for treatment of posttraumatic bone defects. Scientific World J 2014:710302
13.
go back to reference Giannoudis VP, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591–598CrossRef Giannoudis VP, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591–598CrossRef
14.
go back to reference Masquelet A, Kanakaris KN, Obert L, Stafford P, Giannoudis VP (2019) Bone repair using the Masquelet technique. J Bone Joint Surg 101:1024–1036CrossRef Masquelet A, Kanakaris KN, Obert L, Stafford P, Giannoudis VP (2019) Bone repair using the Masquelet technique. J Bone Joint Surg 101:1024–1036CrossRef
15.
go back to reference Lasanianos GN, Kanakaris KN, Giannoudis VP (2010) Current management of long bone large segmental defects. Orthopaedics Trauma 24:149–163CrossRef Lasanianos GN, Kanakaris KN, Giannoudis VP (2010) Current management of long bone large segmental defects. Orthopaedics Trauma 24:149–163CrossRef
16.
go back to reference Vidal L, Kampleitner C, Brennan AM, Hoornaert A, Layrolle P (2020) Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol Vidal L, Kampleitner C, Brennan AM, Hoornaert A, Layrolle P (2020) Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol
17.
go back to reference Zhu G, Mei H, He R, Liu K, Tang J, Wu J (2015) Effect of distraction osteogenesis in patient with tibial shortening after initial union of Congenital Pseudarthrosis of the Tibia (CPT): a preliminary study. BMC Musculoskeletal Disorders 16:216CrossRef Zhu G, Mei H, He R, Liu K, Tang J, Wu J (2015) Effect of distraction osteogenesis in patient with tibial shortening after initial union of Congenital Pseudarthrosis of the Tibia (CPT): a preliminary study. BMC Musculoskeletal Disorders 16:216CrossRef
18.
go back to reference Griffin SK, Davis MK, McKinley OT, Anglen OJ, Chu GT, Boerckel DJ, Kacena AM (2015) Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical Rev Bone Miner Metabolism 13:232–244CrossRef Griffin SK, Davis MK, McKinley OT, Anglen OJ, Chu GT, Boerckel DJ, Kacena AM (2015) Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical Rev Bone Miner Metabolism 13:232–244CrossRef
19.
go back to reference Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ (2017) Ad-vances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf Rev 2:1CrossRef Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ (2017) Ad-vances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf Rev 2:1CrossRef
20.
go back to reference Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine Stem Cells International 2018:2495848 Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine Stem Cells International 2018:2495848
21.
go back to reference Liu F, Vyas C, Poologasundarampillai G, Pape I, Hinduja S, Mirihanage W, Bartolo P (2018) Structural evolution of PCL during melt extrusion 3D printing. Macromol Mater Eng 303:1700494CrossRef Liu F, Vyas C, Poologasundarampillai G, Pape I, Hinduja S, Mirihanage W, Bartolo P (2018) Structural evolution of PCL during melt extrusion 3D printing. Macromol Mater Eng 303:1700494CrossRef
22.
go back to reference Tang X, Thankappan KS, Lee P, Fard ES, Harmon DM, Tran K, Yu X (2014) Polymeric biomaterials in tissue engineering and regenerative medicine. Nat Synth Biomed Polymers 351–371 Tang X, Thankappan KS, Lee P, Fard ES, Harmon DM, Tran K, Yu X (2014) Polymeric biomaterials in tissue engineering and regenerative medicine. Nat Synth Biomed Polymers 351–371
23.
go back to reference Lovez-Alvarez M, Rodríguez-Valencia C, Serra J, González P (2013) Bio-inspired ceramics: promising scaffolds for bone tissue engineering. Procedia Eng 59:51–58CrossRef Lovez-Alvarez M, Rodríguez-Valencia C, Serra J, González P (2013) Bio-inspired ceramics: promising scaffolds for bone tissue engineering. Procedia Eng 59:51–58CrossRef
24.
go back to reference Vyas C, Pereira R, Huang B, Liu F, Wang W, Bartolo P (2017) Engineering the vasculature with additive manufacturing. Current Opinion Biomed Eng 2:1–13CrossRef Vyas C, Pereira R, Huang B, Liu F, Wang W, Bartolo P (2017) Engineering the vasculature with additive manufacturing. Current Opinion Biomed Eng 2:1–13CrossRef
25.
go back to reference Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C 100:631–644CrossRef Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C 100:631–644CrossRef
26.
go back to reference Hou Y, Wang W, Bartolo P, (2020) Novel poly(ɛ-caprolactone)/graphene scaffolds for bone cancer treatment and bone regeneration. 3D Print Add Manuf 7:222–229 Hou Y, Wang W, Bartolo P, (2020) Novel poly(ɛ-caprolactone)/graphene scaffolds for bone cancer treatment and bone regeneration. 3D Print Add Manuf 7:222–229
27.
go back to reference Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef
28.
go back to reference Hou Y, Wang W, Bartolo P (2020) Investigating the effect of carbon nano-materials reinforcing poly(ε-caprolactone) printed scaffolds for bone re-pair applications. Int J Bioprint 6:266CrossRef Hou Y, Wang W, Bartolo P (2020) Investigating the effect of carbon nano-materials reinforcing poly(ε-caprolactone) printed scaffolds for bone re-pair applications. Int J Bioprint 6:266CrossRef
29.
go back to reference Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi MS, Mokhtarzadeh A, Maleki A, Hablin RM (2020) Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineerin. Mater Sci Eng C 107:110267CrossRef Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi MS, Mokhtarzadeh A, Maleki A, Hablin RM (2020) Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineerin. Mater Sci Eng C 107:110267CrossRef
30.
go back to reference Koc B, Acar AA, Weightman A, Cooper G, Blunn G, Bartolo B,v(2019) Bio-manufacturing of customized modular scaffolds for critical bone defects. CIRP Annals 68:209–212 Koc B, Acar AA, Weightman A, Cooper G, Blunn G, Bartolo B,v(2019) Bio-manufacturing of customized modular scaffolds for critical bone defects. CIRP Annals 68:209–212
31.
go back to reference Zhang S, Vijayavenkataraman S, Chong GL, Fuh JYH, Lu WF, (2019) Compu-tational design and optimization of nerve guidance conduits for improved mechanical properties and permeability. J Biomech Eng 141:BIO-18–1350 Zhang S, Vijayavenkataraman S, Chong GL, Fuh JYH, Lu WF, (2019) Compu-tational design and optimization of nerve guidance conduits for improved mechanical properties and permeability. J Biomech Eng 141:BIO-18–1350
32.
go back to reference Almeida HA, Bartolo PJ (2014) Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med Eng Phys 36:1033–1040CrossRef Almeida HA, Bartolo PJ (2014) Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med Eng Phys 36:1033–1040CrossRef
33.
go back to reference Lu L, Zhang Q, Wootton DM, Chiou R, Li D, Lu B, Lelkes P, Zhou J (2014) Mechanical study of polycaprolactone-hydroxyapatite porous scaf-folds created by porogen-based solid freeform fabrication method. J Appl Biomater Function Mater 12:145–154 Lu L, Zhang Q, Wootton DM, Chiou R, Li D, Lu B, Lelkes P, Zhou J (2014) Mechanical study of polycaprolactone-hydroxyapatite porous scaf-folds created by porogen-based solid freeform fabrication method. J Appl Biomater Function Mater 12:145–154
34.
go back to reference Almeida HA, Bártolo PJ (2013) Numerical simulations of bioextruded poly-mer scaffolds for tissue engineering applications. Polymer Int 62:1544–1552CrossRef Almeida HA, Bártolo PJ (2013) Numerical simulations of bioextruded poly-mer scaffolds for tissue engineering applications. Polymer Int 62:1544–1552CrossRef
35.
go back to reference Misch EC, Qu Z, Bidez WM (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofacial Surg 57:700–706CrossRef Misch EC, Qu Z, Bidez WM (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofacial Surg 57:700–706CrossRef
36.
go back to reference Xu Z, Omar MA, Bartolo P (2020) Experimental and numerical simulations of 3D-printed Polycaprolactone scaffolds for bone tissue engineering applications. Biomech Model Mechanobiol Xu Z, Omar MA, Bartolo P (2020) Experimental and numerical simulations of 3D-printed Polycaprolactone scaffolds for bone tissue engineering applications. Biomech Model Mechanobiol
37.
go back to reference Liu F, Wang W, Mirihanage W, Hinduja S, Bartolo PJ (2018) A plasma-assisted bioextrusion system for tissue engineering. CIRP Annals 67:229–232CrossRef Liu F, Wang W, Mirihanage W, Hinduja S, Bartolo PJ (2018) A plasma-assisted bioextrusion system for tissue engineering. CIRP Annals 67:229–232CrossRef
Metadata
Title
Designing Novel Synthetic Grafts for Large Bone Defects: Experimental and Numerical Studies
Authors
Evangelos Daskalakis
Zhanyan Xu
Abdalla M. Omar
Fengyuan Liu
Anil A. Acar
Ali Fallah
Glen Cooper
Andrew Weightman
Gordon Blunn
Bahattin Koç
Paulo Bartolo
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69472-2_4

Premium Partners