Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | OriginalPaper | Chapter

11. Designing the Robot Behavior for Safe Human–Robot Interactions

share
SHARE

Abstract

Recent advances in robotics suggest that human–robot interaction (HRI) is no longer a fantasy, but is happening in various fields such as industrial robots, autonomous vehicles, and medical robots. Human safety is one of the biggest concerns in HRI. As humans will respond to the robot’s movement, interactions need to be considered explicitly by the robot. A systematic approach to design the robot behavior toward safe HRI is discussed in this chapter. By modeling the interactions in a multiagent framework, the safety issues are understood as conflicts in the multiagent system. By mimicking human’s social behavior, the robot’s behavior is constrained by the ‘no-collision’ social norm and the uncertainties it perceives for human motions. An efficient action is then found within the constraints. Both analysis and human-involved simulation verify the effectiveness of the method.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Footnotes
1
In certain cases, the open loop system may not be decoupled. For example, in the case of rehabilitation, the robot can affect the human’s dynamics directly by assisting the human to accomplish special tasks, such as walking. When the robot’s input enters the human’s dynamic equation, (11.2) does not hold.
 
2
The Lemma is proved in [18]. \(\phi \) can be constructed in the following procedure: first, check the order from \(\phi _0\) to \(u_R\) in the Lie derivative sense, denote it by n; then define \(\phi \) as \(\phi _0+k_1\dot{\phi }_0+\cdots +k_{n-1}\phi _{0}^{(n-1)}\). The coefficients \(k_1,\ldots ,k_n\) are chosen such that the roots of \(1+k_1s+\cdots +k_{n-1}s^{n-1}=0\) all lie on the negative real line.
 
3
Methods for inferring \(G_H(k)\) are discussed in [19]. In this chapter, it is assumed to be known.
 
4
The objective function is linear while the constraint function defines an ellipsoid as shown in Fig. 11.11. The optimal solution must lie on the boundary of the ellipsoid. Let \(\gamma \) be a Lagrange multiplier. Define the new cost function as:
$$\begin{aligned} J_{j}^{*}=\frac{\partial \phi }{\partial x_{j}}x_{j}(k+1)+\gamma \left[ 9-\varDelta x_j^{T}X_{j}\left( k+1|k\right) ^{-1}\varDelta x_j\right] \end{aligned}$$
(11.40)
The optimal solution satisfies \(\frac{\partial J_{j}^{*}}{\partial x_{j}(k+1)}=\frac{\partial J_{j}^{*}}{\partial \gamma }=0\), i.e., \((\frac{\partial \phi }{\partial x_{j}})^T-2\gamma X_{j}\left( k+1|k\right) ^{-1}\varDelta x_j = 0\) and \(9-\varDelta x_j^{T}X_{j}\left( k+1|k\right) ^{-1}\varDelta x_j = 0\). Then (11.40) follows.
 
Literature
2.
go back to reference Armbruster W, Böge W (1979) Bayesian game theory. In: Game theory and related topics, vol 17, p 28 Armbruster W, Böge W (1979) Bayesian game theory. In: Game theory and related topics, vol 17, p 28
3.
go back to reference Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, vol 200. Academic press, London MATH Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, vol 200. Academic press, London MATH
4.
go back to reference Berger CR, Calabrese RJ (1975) Some explorations in initial interaction and beyond: toward a developmental theory of interpersonal communication. Hum Commun Res 1(2):99–112 CrossRef Berger CR, Calabrese RJ (1975) Some explorations in initial interaction and beyond: toward a developmental theory of interpersonal communication. Hum Commun Res 1(2):99–112 CrossRef
5.
go back to reference Burns LD (2013) Sustainable mobility: a vision of our transport future. Nature 497(7448):181–182 CrossRef Burns LD (2013) Sustainable mobility: a vision of our transport future. Nature 497(7448):181–182 CrossRef
6.
go back to reference Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson/Prentice Hall, Upper Saddle River Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson/Prentice Hall, Upper Saddle River
7.
go back to reference Du Toit NE, Burdick JW (2012) Robot motion planning in dynamic, uncertain environments. IEEE Trans Robot 28(1):101–115 CrossRef Du Toit NE, Burdick JW (2012) Robot motion planning in dynamic, uncertain environments. IEEE Trans Robot 28(1):101–115 CrossRef
8.
go back to reference Franchi A, Secchi C, Son HI, Bülthoff HH, Giordano PR (2012) Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Trans Robot 28(5):1019–1033 CrossRef Franchi A, Secchi C, Son HI, Bülthoff HH, Giordano PR (2012) Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Trans Robot 28(5):1019–1033 CrossRef
9.
go back to reference Goodwin GC, Sin KS (2013) Adaptive filtering prediction and control. Courier Dover Publications, New York MATH Goodwin GC, Sin KS (2013) Adaptive filtering prediction and control. Courier Dover Publications, New York MATH
10.
go back to reference Gracia L, Garelli F, Sala A (2013) Reactive sliding-mode algorithm for collision avoidance in robotic systems. IEEE Trans Control Syst Technol 21(6):2391–2399 CrossRef Gracia L, Garelli F, Sala A (2013) Reactive sliding-mode algorithm for collision avoidance in robotic systems. IEEE Trans Control Syst Technol 21(6):2391–2399 CrossRef
11.
go back to reference Haddadin S, Albu-Schaffer A, Eiberger O, Hirzinger G (2010) New insights concerning intrinsic joint elasticity for safety. In: 2010 IEEE/RSJ international conference on proceedings of intelligent robots and systems (IROS). IEEE, pp 2181–2187 Haddadin S, Albu-Schaffer A, Eiberger O, Hirzinger G (2010) New insights concerning intrinsic joint elasticity for safety. In: 2010 IEEE/RSJ international conference on proceedings of intelligent robots and systems (IROS). IEEE, pp 2181–2187
12.
go back to reference Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37(2):181–218 MathSciNetCrossRefMATH Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37(2):181–218 MathSciNetCrossRefMATH
13.
go back to reference Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98 CrossRef Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98 CrossRef
14.
go back to reference Kong K, Bae J, Tomizuka M (2009) Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. IEEE/ASME Trans Mechatron 14(1):105–118 CrossRef Kong K, Bae J, Tomizuka M (2009) Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. IEEE/ASME Trans Mechatron 14(1):105–118 CrossRef
15.
go back to reference Krüger J, Lien T, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann.-Manuf. Technol. 58(2):628–646 CrossRef Krüger J, Lien T, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann.-Manuf. Technol. 58(2):628–646 CrossRef
17.
go back to reference Liu J (2001) Autonomous agents and multi-agent systems: explorations in learning, self-organization, and adaptive computation. World Scientific, Singapore CrossRef Liu J (2001) Autonomous agents and multi-agent systems: explorations in learning, self-organization, and adaptive computation. World Scientific, Singapore CrossRef
18.
go back to reference Liu C, Tomizuka M (2014a) Control in a safe set: addressing safety in human robot interactions. In: ASME 2014 dynamic systems and control conference, ASME, p V003T42A003 Liu C, Tomizuka M (2014a) Control in a safe set: addressing safety in human robot interactions. In: ASME 2014 dynamic systems and control conference, ASME, p V003T42A003
19.
go back to reference Liu C, Tomizuka M (2014b) Modeling and controller design of cooperative robots in workspace sharing human-robot assembly teams. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1386–1391 Liu C, Tomizuka M (2014b) Modeling and controller design of cooperative robots in workspace sharing human-robot assembly teams. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1386–1391
20.
go back to reference Liu C, Tomizuka M (2015) Safe exploration: addressing various uncertainty levels in human robot interactions. In: American control conference (ACC), pp 465–470 Liu C, Tomizuka M (2015) Safe exploration: addressing various uncertainty levels in human robot interactions. In: American control conference (ACC), pp 465–470
21.
go back to reference Liu C, Tomizuka M (2016a) Algorithmic safety measures for intelligent industrial co-robots. In: 2016 IEEE international conference on proceedings of robotics and automation (ICRA). IEEE, pp 3095–3102 Liu C, Tomizuka M (2016a) Algorithmic safety measures for intelligent industrial co-robots. In: 2016 IEEE international conference on proceedings of robotics and automation (ICRA). IEEE, pp 3095–3102
22.
go back to reference Liu C, Tomizuka M (2016b) Enabling safe freeway driving for automated vehicles. In: 2016 American control conference. IEEE, pp 3461–3467 Liu C, Tomizuka M (2016b) Enabling safe freeway driving for automated vehicles. In: 2016 American control conference. IEEE, pp 3461–3467
23.
go back to reference Liu C, Tomizuka M (2016c) Who to blame? Learning and control strategies with information asymmetry. In: 2016 American control conference. IEEE, pp 4859–4864 Liu C, Tomizuka M (2016c) Who to blame? Learning and control strategies with information asymmetry. In: 2016 American control conference. IEEE, pp 4859–4864
24.
go back to reference Mohr J, Spekman R (1994) Characteristics of partnership success: partnership attributes, communication behavior, and conflict resolution techniques. Strateg Manag J 15(2):135–152 CrossRef Mohr J, Spekman R (1994) Characteristics of partnership success: partnership attributes, communication behavior, and conflict resolution techniques. Strateg Manag J 15(2):135–152 CrossRef
25.
go back to reference Ozguner U, Stiller C, Redmill K (2007) Systems for safety and autonomous behavior in cars: the darpa grand challenge experience. Proc IEEE 95(2):397–412 CrossRef Ozguner U, Stiller C, Redmill K (2007) Systems for safety and autonomous behavior in cars: the darpa grand challenge experience. Proc IEEE 95(2):397–412 CrossRef
26.
go back to reference Park DH, Hoffmann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: 2008 IEEE-RAS international conference on humanoid robots. IEEE, pp 91–98 Park DH, Hoffmann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: 2008 IEEE-RAS international conference on humanoid robots. IEEE, pp 91–98
27.
go back to reference Park HK, Hong HS, Kwon HJ, Chung MJ (2001) A nursing robot system for the elderly and the disabled. International J Hum.-friendly Welfare Robot Syst (HWRS) 2(4):11–16 Park HK, Hong HS, Kwon HJ, Chung MJ (2001) A nursing robot system for the elderly and the disabled. International J Hum.-friendly Welfare Robot Syst (HWRS) 2(4):11–16
28.
go back to reference Russell S, Norvig P (1995) Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River MATH Russell S, Norvig P (1995) Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River MATH
29.
go back to reference Schulman J, Ho J, Lee A, Awwal I, Bradlow H, Abbeel P (2013) Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (RSS), vol 9, pp 1–10 Schulman J, Ho J, Lee A, Awwal I, Bradlow H, Abbeel P (2013) Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (RSS), vol 9, pp 1–10
30.
go back to reference Sisbot EA, Marin-Urias LF, Broquere X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot 2(3):329–343 CrossRef Sisbot EA, Marin-Urias LF, Broquere X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot 2(3):329–343 CrossRef
31.
go back to reference Tachi S, Komoriya K (1984) Guide dog robot. Control, Planning, and Architecture, Autonomous Mobile Robots, pp 360–367 Tachi S, Komoriya K (1984) Guide dog robot. Control, Planning, and Architecture, Autonomous Mobile Robots, pp 360–367
32.
go back to reference Tadele TS, Vries TJd, Stramigioli S (2014) The safety of domestic robots: a survey of various safety-related publications. Robotics and Automation Magazine, IEEE pp 134–142 Tadele TS, Vries TJd, Stramigioli S (2014) The safety of domestic robots: a survey of various safety-related publications. Robotics and Automation Magazine, IEEE pp 134–142
33.
go back to reference Tsai CS, Hu JS, Tomizuka M (2014) Ensuring safety in human-robot coexistence environment. In: 2014 IEEE/RSJ international conference on proceedings of intelligent robots and systems (IROS). IEEE, pp 4191–4196 Tsai CS, Hu JS, Tomizuka M (2014) Ensuring safety in human-robot coexistence environment. In: 2014 IEEE/RSJ international conference on proceedings of intelligent robots and systems (IROS). IEEE, pp 4191–4196
34.
go back to reference Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable domestic robots: applying insights from social psychology. Int J Soc Robot 1(1):95–108 CrossRef Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable domestic robots: applying insights from social psychology. Int J Soc Robot 1(1):95–108 CrossRef
Metadata
Title
Designing the Robot Behavior for Safe Human–Robot Interactions
Authors
Changliu Liu
Masayoshi Tomizuka
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_11