Zusammenfassung
Das vorliegende Kapitel beschäftigt sich mit einigen typischen Anwendungsfällen von Data Mining im Bereich des Risikoreportings von Finanzinstituten, die den in Abschn.
2.4.2 vorgestellten Phasen 2 und 3 (Datenuntersuchung und Datenaufbereitung), 4 (Modellierung) und 5 (Evaluierung) des CRISP-DM-Vorgehensmodells angesprochenen Problemfeldern nachempfunden sind. Dabei greift es auf die in Abschn.
2.4.4 vorgestellten Analyseverfahren (Clusterverfahren, Hauptkomponentenanalysen, lineare und logistische Regressionsanalysen, Entscheidungsbaumverfahren, künstliche neuronale Netze) zurück und zeigt in stark vereinfachter Form mithilfe des Programmpaketes RStudio, wie Teilaspekte der Modellierung von Kreditausfallwahrscheinlichkeiten in der Praxis aussehen könnten.