Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

10-08-2020 | Original Paper | Issue 4/2020

International Journal on Document Analysis and Recognition (IJDAR) 4/2020

DetectGAN: GAN-based text detector for camera-captured document images

Journal:
International Journal on Document Analysis and Recognition (IJDAR) > Issue 4/2020
Authors:
Jinyuan Zhao, Yanna Wang, Baihua Xiao, Cunzhao Shi, Fuxi Jia, Chunheng Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Nowadays, with the development of electronic devices, more and more attention has been paid to camera-based text processing. Different from scene image, the recognition system of document image needs to sort out the recognition results and store them in the structured document for the subsequent data processing. However, in document images, the fusion of text lines largely depends on their semantic information rather than just the distance between the characters, which causes the problem of learning confusion in training. At the same time, for multi-directional printed characters in document images, it is necessary to use additional directional information to guide subsequent recognition tasks. In order to avoid learning confusion and get recognition-friendly detection results, we propose a character-level text detection framework, DetectGAN, based on the conditional generative adversarial networks (abbreviation cGAN used in the text). In the proposed framework, position regression and NMS process are removed, and the problem of text detection is directly transformed into an image-to-image generation problem. Experimental results show that our method has an excellent effect on text detection of camera-captured document images and outperforms the classical and state-of-the-art algorithms.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partner

    Image Credits