Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Detecting Anatomical Landmarks for Motion Estimation in Weight-Bearing Imaging of Knees

Authors : Bastian Bier, Katharina Aschoff, Christopher Syben, Mathias Unberath, Marc Levenston, Garry Gold, Rebecca Fahrig, Andreas Maier

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Patient motion is one of the major challenges in cone-beam computed tomography (CBCT) scans acquired under weight-bearing conditions, since it leads to severe artifacts in reconstructions. In knee imaging, a state-of-the-art approach to compensate for patient motion uses fiducial markers attached to the skin. However, marker placement is a tedious and time consuming procedure for both, the physician and the patient. In this manuscript we investigate the use of anatomical landmarks in an attempt to replace externally attached fiducial markers. To this end, we devise a method to automatically detect anatomical landmarks in projection domain X-ray images irrespective of the viewing direction. To overcome the need for annotation of every X-ray image and to assure consistent annotation across images from the same subject, annotations and projection images are generated from 3D CT data. Twelve landmarks are annotated in supine CBCT reconstructions of the knee joint and then propagated to synthetically generated projection images. Then, a sequential Convolutional Neuronal Network is trained to predict the desired landmarks in projection images. The network is evaluated on synthetic images and real clinical data. On synthetic data promising results are achieved with a mean prediction error of \(8.4 \pm 8.2\) pixel. The network generalizes to real clinical data without the need of re-training. However, practical issues, such as the second leg entering the field of view, limit the performance of the method at this stage. Nevertheless, our results are promising and encourage further investigations on the use of anatomical landmarks for motion management.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Choi, J., et al.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees Part I. Numerical model-based optimization. Med. Phys. 41(6), 061902 (2014) CrossRef Choi, J., et al.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees Part I. Numerical model-based optimization. Med. Phys. 41(6), 061902 (2014) CrossRef
2.
go back to reference Choi, J.H., et al.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees II. Experiment. Med. Phys. 41(6), 061902 (2014) CrossRef Choi, J.H., et al.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees II. Experiment. Med. Phys. 41(6), 061902 (2014) CrossRef
3.
go back to reference Powers, C.M., Ward, S.R., Fredericson, M.: Knee extension in persons with lateral subluxation of the patella : a preliminary study. J. Orthop. Sports Phys. Ther. 33(11), 677–685 (2013) CrossRef Powers, C.M., Ward, S.R., Fredericson, M.: Knee extension in persons with lateral subluxation of the patella : a preliminary study. J. Orthop. Sports Phys. Ther. 33(11), 677–685 (2013) CrossRef
4.
go back to reference Berger, M., et al.: Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med. Phys. 43(3), 1235–1248 (2016) CrossRef Berger, M., et al.: Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med. Phys. 43(3), 1235–1248 (2016) CrossRef
5.
go back to reference Bier, B., et al.: Range imaging for motion compensation in C-arm cone-beam CT of knees under weight-bearing conditions. J. Imaging 4(4), 561–570 (2018) Bier, B., et al.: Range imaging for motion compensation in C-arm cone-beam CT of knees under weight-bearing conditions. J. Imaging 4(4), 561–570 (2018)
6.
go back to reference Sisniega, A., Stayman, J., Yorkston, J., Siewerdsen, J., Zbijewski, W.: Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys. Med. Biol. 62(9), 3712–3734 (2017) CrossRef Sisniega, A., Stayman, J., Yorkston, J., Siewerdsen, J., Zbijewski, W.: Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys. Med. Biol. 62(9), 3712–3734 (2017) CrossRef
7.
go back to reference Unberath, M., Choi, J.H., Berger, M., Maier, A., Fahrig, R.: Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees. In: SPIE Medical Imaging, vol. 9413, March 2015. 94130D Unberath, M., Choi, J.H., Berger, M., Maier, A., Fahrig, R.: Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees. In: SPIE Medical Imaging, vol. 9413, March 2015. 94130D
8.
go back to reference Ouadah, S., Jacobson, M., Stayman, J.W., Ehtiati, T., Weiss, C., Siewerdsen, J.H.: Correction of patient motion in cone-beam CT Correction of patient motion in cone-beam CT using 3D 2D registration. Phys. Med. Biol. 62, 8813–8831 (2017) Ouadah, S., Jacobson, M., Stayman, J.W., Ehtiati, T., Weiss, C., Siewerdsen, J.H.: Correction of patient motion in cone-beam CT Correction of patient motion in cone-beam CT using 3D 2D registration. Phys. Med. Biol. 62, 8813–8831 (2017)
9.
go back to reference Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2018 to appear) Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2018 to appear)
10.
go back to reference Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR, pp. 4724–4732 (2016) Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR, pp. 4724–4732 (2016)
11.
go back to reference Unberath, M., et al.: DeepDRR-a catalyst for machine learning in fluoroscopy-guided procedures. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2018 to appear) Unberath, M., et al.: DeepDRR-a catalyst for machine learning in fluoroscopy-guided procedures. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2018 to appear)
12.
go back to reference Maier, A., et al.: CONRAD - a software framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013) CrossRef Maier, A., et al.: CONRAD - a software framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013) CrossRef
13.
go back to reference Müller, K., et al.: Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT. Phys. Med. Biol. 59(12), 3121 (2014) CrossRef Müller, K., et al.: Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT. Phys. Med. Biol. 59(12), 3121 (2014) CrossRef
15.
Metadata
Title
Detecting Anatomical Landmarks for Motion Estimation in Weight-Bearing Imaging of Knees
Authors
Bastian Bier
Katharina Aschoff
Christopher Syben
Mathias Unberath
Marc Levenston
Garry Gold
Rebecca Fahrig
Andreas Maier
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_10

Premium Partner