Skip to main content
Top
Published in:

25-05-2024

Detecting and Classifying Parametric Faults in Analog Circuits Using an Optimized Attention Neural Networks

Authors: S. P. Karthi, K. Kavitha

Published in: Circuits, Systems, and Signal Processing | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In analog circuits, the essential variability in component parameters and the various distribution of fault component parameters present challenges like unpredicted faults, inconsistent data and high computational complexity for effective classification diagnosis. To address these issues, this research introduces an Optimized Attention Neural Networks, integrating three machine learning classifiers: Pyramidal convolution split Attention Neural Networks, Graph Visual Attention Neural Networks and Capsule Shuffle Attention Neural Networks. Initially, the approach incorporates fuzzy rough mutual information, spatial distribution principal component analysis and enhanced minimum redundancy maximum relevance techniques to select crucial features for distinguishing and categorizing parametric faults in analog circuits. Subsequently, the proposed classifiers leverage with the enhanced termite alate optimization algorithm for the recognition and categorization of parametric burdens. The experiments are conducted using MATLAB, demonstrate notable outcomes across three filters. The achieved results indicate an average accuracy of 99.92% for the sallen-key band-pass filter, 99.88% for the four op-amp biquad high-pass filter and 99.86% for t*he leap frog filter. Furthermore, these filters exhibit higher precision and recall values when compared to existing approaches. Additionally, the proposed approach demonstrates reduced computational time (4.18 s, 3.89 s and 5.59 s) of three filters by employing a minimal number of features, while still yielding excellent results compared to other existing approaches. These findings underscore the superior performance of the introduced approach in the domain of analog circuits, positioning it as a promising solution for the complex task of detecting and classifying specified faults in analog circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
Metadata
Title
Detecting and Classifying Parametric Faults in Analog Circuits Using an Optimized Attention Neural Networks
Authors
S. P. Karthi
K. Kavitha
Publication date
25-05-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 9/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02722-1