Skip to main content
Top
Published in: Cognitive Computation 2/2020

24-12-2019

Detecting Gas Turbine Combustor Anomalies Using Semi-supervised Anomaly Detection with Deep Representation Learning

Author: Weizhong Yan

Published in: Cognitive Computation | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning (DL), regarded as a breakthrough machine learning technique, has proven to be effective for a variety of real-world applications. However, DL has not been actively applied to condition monitoring of industrial assets, such as gas turbine combustors. We propose a deep semi-supervised anomaly detection (deepSSAD) that has two key components: (1) using DL to learn representations or features from multivariate, time-series sensor measurements; and (2) using one-class classification to model normality in the learned feature space, thus performing anomaly detection. Both steps use normal data only; thus our anomaly detection falls into the semi-supervised anomaly detection category, which is advantageous for industrial asset condition monitoring where abnormal or faulty data is rare. Using the data collected from a real-world gas turbine combustion system, we demonstrate that our proposed approach achieved a good detection performance (AUC) of 0.9706 ± 0.0029. Furthermore, we compare the detection performance of the proposed approach against that of other different designs, including different features (i.e., the deep learned, handcrafted and PCA features) and different detection models (i.e., one-class ELM, one-class SVM, isolation forest, and Gaussian mixture model). The proposed approach significantly outperforms others. The proposed combustor anomaly detection approach is effective in detecting combustor anomalies or faults.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We also tried using more layers of SDAE, but we could not obtain better features in terms of detection performance. Our hypothesis is that 2-layer SDAE is sufficient for capturing normal “patterns” of the 27-dimensional TC profiles concerned in this study.
 
Literature
2.
go back to reference C. Allegorico and V. Mantini, “A data-driven approach for on-line gas turbine combustion monitoring using classification models”, 2nd European Conference of the Prognostics and Health Management Society 2014, Nantes, France, July 8–10, 2014. C. Allegorico and V. Mantini, “A data-driven approach for on-line gas turbine combustion monitoring using classification models”, 2nd European Conference of the Prognostics and Health Management Society 2014, Nantes, France, July 8–10, 2014.
3.
go back to reference Arel I, Rose DC, Kamowski TP. Deep machine learning – a new frontier in artificial intelligence research. IEEE Computer Intelligence Magazine. 2014;5(4):13–8. Arel I, Rose DC, Kamowski TP. Deep machine learning – a new frontier in artificial intelligence research. IEEE Computer Intelligence Magazine. 2014;5(4):13–8.
5.
go back to reference Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev. 2004;22(2):85–126. Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev. 2004;22(2):85–126.
6.
go back to reference D.M.J. Tax, “One-class classification: concept-learning in the absence of counter-examples”, Doctoral Dissertation, University of Delft, The Netherlands, 2001. D.M.J. Tax, “One-class classification: concept-learning in the absence of counter-examples”, Doctoral Dissertation, University of Delft, The Netherlands, 2001.
7.
go back to reference Khan SS, Madden MG. A survey of recent trends in one class classification. In: Intelligence A, Cognitive S, Coyle L, Freyne J, editors. Dublin. Ireland: Springer-Verlag; 2010. Khan SS, Madden MG. A survey of recent trends in one class classification. In: Intelligence A, Cognitive S, Coyle L, Freyne J, editors. Dublin. Ireland: Springer-Verlag; 2010.
8.
go back to reference Zhang L, Suganthan PN. A survey of randomized algorithms for training neural networks. Inf Sci. 2016;364:146–55. Zhang L, Suganthan PN. A survey of randomized algorithms for training neural networks. Inf Sci. 2016;364:146–55.
10.
go back to reference Huang GB, Zhu QY, Siew CK, C.K. Extreme learning machine: theory and applications. Neurocomputing. Dec. 2006;70(1–3):489–501. Huang GB, Zhu QY, Siew CK, C.K. Extreme learning machine: theory and applications. Neurocomputing. Dec. 2006;70(1–3):489–501.
11.
go back to reference G.B. Huang, H.M. Zhou, X.J. Ding and R. Zhang , “Extreme learning machine for regression and multiclass classification”, IEEE Trans Syst Man Cybern B Cybern, Vol. 42, No. 2, April 2012, pp. 513–529. G.B. Huang, H.M. Zhou, X.J. Ding and R. Zhang , “Extreme learning machine for regression and multiclass classification”, IEEE Trans Syst Man Cybern B Cybern, Vol. 42, No. 2, April 2012, pp. 513–529.
13.
go back to reference W. Huang, N. Li, Z. Lin, G. B. Huang, W. Zong, J. Zhou and Y. Duan, "Liver tumor detection and segmentation using kernel based extreme learning machine," IEEE Conference on Engineering in Medicine and Biology Society (EMBC), vol., no.,pp.3662–3665, 3–7 July 2013. W. Huang, N. Li, Z. Lin, G. B. Huang, W. Zong, J. Zhou and Y. Duan, "Liver tumor detection and segmentation using kernel based extreme learning machine," IEEE Conference on Engineering in Medicine and Biology Society (EMBC), vol., no.,pp.3662–3665, 3–7 July 2013.
15.
go back to reference Chandola V, Banerjee A, Kumar V. Anomaly detection : A Survey. ACM Comput Surv. 2009;41(3):15. Chandola V, Banerjee A, Kumar V. Anomaly detection : A Survey. ACM Comput Surv. 2009;41(3):15.
16.
go back to reference Pimentel MAF, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Sgnal Processing. 2014;99:215–49. Pimentel MAF, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Sgnal Processing. 2014;99:215–49.
18.
go back to reference Akoglu L, Tong HH, Koutra D. Graph-based anomaly detection and description: a survey. Data Min Knowl Disc. 2014;28(4):2014 arXiv:1404.4679. Akoglu L, Tong HH, Koutra D. Graph-based anomaly detection and description: a survey. Data Min Knowl Disc. 2014;28(4):2014 arXiv:1404.4679.
19.
go back to reference Tax DMJ, Duin RPW. Support vector domain description. Pattern Recogn Lett. 1999b;20:1191–9. Tax DMJ, Duin RPW. Support vector domain description. Pattern Recogn Lett. 1999b;20:1191–9.
20.
go back to reference Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support vector method for novelty detection. In: Solla SA, Leen TK, Müller K, editors. Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press; 1999. Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support vector method for novelty detection. In: Solla SA, Leen TK, Müller K, editors. Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press; 1999.
21.
go back to reference Clifton L, Clifton DA, Zhang Y, Watkinson P, Tarassenko L, Yin H. Probabilistic novelty detection with support vector machines. IEEE Trans Reliab. 2014;63(2):455–67. Clifton L, Clifton DA, Zhang Y, Watkinson P, Tarassenko L, Yin H. Probabilistic novelty detection with support vector machines. IEEE Trans Reliab. 2014;63(2):455–67.
22.
go back to reference Kemmler M, Rodner E, Wacker E-S, Denzler J. One-class classification with Gaussian processes. Pattern Recogn. 2013;46(12):3507–18. Kemmler M, Rodner E, Wacker E-S, Denzler J. One-class classification with Gaussian processes. Pattern Recogn. 2013;46(12):3507–18.
23.
go back to reference Désir C, Bernard S, Petitjean C, Heutte L. One class random forests. Pattern Recogn. 2013;46(12):3490–506. Désir C, Bernard S, Petitjean C, Heutte L. One class random forests. Pattern Recogn. 2013;46(12):3490–506.
24.
go back to reference T. Liu, K.M. Ting and Z.H. Zhou, “Isolation Forests”, Proceedings of the 2008 IEEE International Conference on Data Mining. pp. 413–422, 2008. T. Liu, K.M. Ting and Z.H. Zhou, “Isolation Forests”, Proceedings of the 2008 IEEE International Conference on Data Mining. pp. 413–422, 2008.
26.
go back to reference Lishuai L, John Hansman R, Palacios R, Welsch R. Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring. Transportation Research Part C: Emerging Technologies. 2016;64(2016):45–57. Lishuai L, John Hansman R, Palacios R, Welsch R. Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring. Transportation Research Part C: Emerging Technologies. 2016;64(2016):45–57.
28.
go back to reference Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su, "One-Class classification with extreme learning machine," Mathematical Problems in Engineering, Vol. 2015, Article ID 412957. Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su, "One-Class classification with extreme learning machine," Mathematical Problems in Engineering, Vol. 2015, Article ID 412957.
30.
go back to reference Zaher A, McArthur SDJ, Infield DG, Patel Y. Online wind turbine fault detection through automated SCADA data analysis. Wind Energy. 12(6):574–93. Zaher A, McArthur SDJ, Infield DG, Patel Y. Online wind turbine fault detection through automated SCADA data analysis. Wind Energy. 12(6):574–93.
31.
go back to reference F. Xue and W. Yan, “Parametric model-based anomaly detection for locomotive subsystems”, Proceedings of the 2007 International joint conference on neural networks (IJCNN), Orlando, FL, August 12-17, 2007. F. Xue and W. Yan, “Parametric model-based anomaly detection for locomotive subsystems”, Proceedings of the 2007 International joint conference on neural networks (IJCNN), Orlando, FL, August 12-17, 2007.
32.
go back to reference Ogbonnaya EA, Ugwu HU, Theophilus Johnson JK. Gas Turbine Engine Anomaly Detection Through Computer Simulation Technique of Statistical Correlation. IOSR Journal of Engineering. 2(4):544–54. Ogbonnaya EA, Ugwu HU, Theophilus Johnson JK. Gas Turbine Engine Anomaly Detection Through Computer Simulation Technique of Statistical Correlation. IOSR Journal of Engineering. 2(4):544–54.
33.
go back to reference Arranz A, Cruz A, Sanz-Bobi MA, Riuz P, Coutino J. DADICO: Intelligent system for anomaly detection in a combined cycle gas turbine plant. Expert Syst Appl. 34(4):2267–77. Arranz A, Cruz A, Sanz-Bobi MA, Riuz P, Coutino J. DADICO: Intelligent system for anomaly detection in a combined cycle gas turbine plant. Expert Syst Appl. 34(4):2267–77.
35.
go back to reference Chakraborty S, Gupta S, Ray A, Mukhopadhyay A. Data-driven fault detection and estimation in thermal pulse combustors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2008;222:1097–108. https://doi.org/10.1243/09544100JAERO432. Chakraborty S, Gupta S, Ray A, Mukhopadhyay A. Data-driven fault detection and estimation in thermal pulse combustors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2008;222:1097–108. https://​doi.​org/​10.​1243/​09544100JAERO432​.
36.
go back to reference Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Machine Intell. 2013;35:1798–828. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Machine Intell. 2013;35:1798–828.
37.
go back to reference Y. Bengio. (2011). Deep learning of representations for unsupervised and transfer learning. In JMLR W&CP: Proc. Unsupervised and Transfer Learning. Y. Bengio. (2011). Deep learning of representations for unsupervised and transfer learning. In JMLR W&CP: Proc. Unsupervised and Transfer Learning.
38.
go back to reference Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, Inderjit S. Dhillon (2017). Similarity Preserving Representation Learning for Time Series Analysis. arXiv:1702.03584v2. Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, Inderjit S. Dhillon (2017). Similarity Preserving Representation Learning for Time Series Analysis. arXiv:1702.03584v2.
39.
go back to reference L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed and G. Hinton (2010). Binary coding of speech spectrograms using a deep auto-encoder. In Interspeech 2010, Makuhari, Chiba, Japan. L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed and G. Hinton (2010). Binary coding of speech spectrograms using a deep auto-encoder. In Interspeech 2010, Makuhari, Chiba, Japan.
40.
go back to reference Hinton GE, Osindero S, The Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.PubMed Hinton GE, Osindero S, The Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.PubMed
41.
go back to reference Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, P. Kuksa. R. Natural language processing (almost) from scratch. J Mach Learn Res. 2011;12:2493–537. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, P. Kuksa. R. Natural language processing (almost) from scratch. J Mach Learn Res. 2011;12:2493–537.
42.
go back to reference JeroneTA Andrews, Thomas Tanay, Edward J Morton and Lewis D Gri (2016). Transfer representation-learning for anomaly detection. ICML. JeroneTA Andrews, Thomas Tanay, Edward J Morton and Lewis D Gri (2016). Transfer representation-learning for anomaly detection. ICML.
43.
go back to reference Sohaib M, Kim C-H, Kim J-M. A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors. 2017;17(12):2876. Sohaib M, Kim C-H, Kim J-M. A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors. 2017;17(12):2876.
44.
go back to reference Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly Detection using Reconstruction Probability. Technical Report. SNU Data Mining Center. 1–18 pages. Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly Detection using Reconstruction Probability. Technical Report. SNU Data Mining Center. 1–18 pages.
45.
go back to reference Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 665–674. Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 665–674.
47.
go back to reference Song H, Jiang Z, Men A, Yang B. A hybrid semi-supervised anomaly detection model for high-dimensional data. Computational Intelligence and Neuroscience. 2017;2017:8501683.PubMedPubMedCentral Song H, Jiang Z, Men A, Yang B. A hybrid semi-supervised anomaly detection model for high-dimensional data. Computational Intelligence and Neuroscience. 2017;2017:8501683.PubMedPubMedCentral
48.
go back to reference B. Zong, Etl. “Deep autoencoding Gaussian mixture model for unsupervised anomaly detection”. ICLR. B. Zong, Etl. “Deep autoencoding Gaussian mixture model for unsupervised anomaly detection”. ICLR.
49.
go back to reference Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla, (2018). Anomaly Detection using One-Class Neural Networks, KDD’2018, 19–23 August 2018, London, United Kingdom. Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla, (2018). Anomaly Detection using One-Class Neural Networks, KDD’2018, 19–23 August 2018, London, United Kingdom.
50.
go back to reference Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.PubMed Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.PubMed
51.
go back to reference C. Ieracitano, A. Adeel, M. Gogate, K. Dashtipour, F. C. Morabito, H. Larijani, A. Raza and A. Hussain, “Statistical analysis driven optimized deep learning system for intrusion detection”, arXiv:1808.05633. C. Ieracitano, A. Adeel, M. Gogate, K. Dashtipour, F. C. Morabito, H. Larijani, A. Raza and A. Hussain, “Statistical analysis driven optimized deep learning system for intrusion detection”, arXiv:1808.05633.
52.
go back to reference H. Lee, A. Battle, R. Raina and A.Y. Ng (2007). Efficient sparse coding algorithms. In NIPS, 2007. H. Lee, A. Battle, R. Raina and A.Y. Ng (2007). Efficient sparse coding algorithms. In NIPS, 2007.
53.
go back to reference A. Coates, H. Lee and A.Y. Ng. (2011). An analysis of single-layer networks in unsupervised feature learning. In AIS-TATS 14, 2011. A. Coates, H. Lee and A.Y. Ng. (2011). An analysis of single-layer networks in unsupervised feature learning. In AIS-TATS 14, 2011.
54.
go back to reference Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11:3371–408. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11:3371–408.
55.
go back to reference H. Wang, X. Shi and D.Y. Yeung. (2015). Relational stacked denoising autoencoder for tag recommendation. Proceedings of AAAI ‘15. H. Wang, X. Shi and D.Y. Yeung. (2015). Relational stacked denoising autoencoder for tag recommendation. Proceedings of AAAI ‘15.
56.
go back to reference Shaheryar A, Yin X-C, Ramay WY. Robust feature extraction on vibration data under deep learning framework: An application for fault identification in rotary machines. Int J Comput Appl. 2017;167(4). Shaheryar A, Yin X-C, Ramay WY. Robust feature extraction on vibration data under deep learning framework: An application for fault identification in rotary machines. Int J Comput Appl. 2017;167(4).
57.
go back to reference Huang G-B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn Comput. 2014;6:376–90. Huang G-B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn Comput. 2014;6:376–90.
58.
go back to reference M. Anbar, R. Abdullah, B. N. Altamimi and A. Hussain, “A machine learning approach to detect router advertisement flooding attacks in next-generation IPv6 networks.” Cogn Comput, Vol. 10 (2), April 2018, pp. 201–214. M. Anbar, R. Abdullah, B. N. Altamimi and A. Hussain, “A machine learning approach to detect router advertisement flooding attacks in next-generation IPv6 networks.” Cogn Comput, Vol. 10 (2), April 2018, pp. 201–214.
61.
go back to reference D. Erhan, A. Courville & Y. Bengio. (2010). Understanding representations learned in deep architectures. De-partment d’Informatique et Recherche Operationnelle, University of Montreal, QC, Canada, tech. Rep. 1355. D. Erhan, A. Courville & Y. Bengio. (2010). Understanding representations learned in deep architectures. De-partment d’Informatique et Recherche Operationnelle, University of Montreal, QC, Canada, tech. Rep. 1355.
Metadata
Title
Detecting Gas Turbine Combustor Anomalies Using Semi-supervised Anomaly Detection with Deep Representation Learning
Author
Weizhong Yan
Publication date
24-12-2019
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2020
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09710-7

Other articles of this Issue 2/2020

Cognitive Computation 2/2020 Go to the issue

Premium Partner