Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-02-2016 | Methodologies and Application | Issue 16/2017

Soft Computing 16/2017

Detecting structural breaks in time series via genetic algorithms

Journal:
Soft Computing > Issue 16/2017
Authors:
Benjamin Doerr, Paul Fischer, Astrid Hilbert, Carsten Witt
Important notes
Communicated by V. Loia.
A short version of the paper appeared in the proceedings of GECCO 2013 (as poster).

Abstract

Detecting structural breaks is an essential task for the statistical analysis of time series, for example, for fitting parametric models to it. In short, structural breaks are points in time at which the behaviour of the time series substantially changes. Typically, no solid background knowledge of the time series under consideration is available. Therefore, a black-box optimization approach is our method of choice for detecting structural breaks. We describe a genetic algorithm framework which easily adapts to a large number of statistical settings. To evaluate the usefulness of different crossover and mutation operations for this problem, we conduct extensive experiments to determine good choices for the parameters and operators of the genetic algorithm. One surprising observation is that use of uniform and one-point crossover together gave significantly better results than using either crossover operator alone. Moreover, we present a specific fitness function which exploits the sparse structure of the break points and which can be evaluated particularly efficiently. The experiments on artificial and real-world time series show that the resulting algorithm detects break points with high precision and is computationally very efficient. A reference implementation with the data used in this paper is available as an applet at the following address: http://​www.​imm.​dtu.​dk/​~pafi/​TSX/​. It has also been implemented as package SBRect for the statistics language R.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 16/2017

Soft Computing 16/2017 Go to the issue

Premium Partner

    Image Credits