Skip to main content
Top

2024 | OriginalPaper | Chapter

Detection of Cyber Attacks Targeting Autonomous Vehicles Using Machine Learning

Authors : Furkan Onur, Mehmet Ali Barışkan, Serkan Gönen, Cemallettin Kubat, Mustafa Tunay, Ercan Nurcan Yılmaz

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical issue of cybersecurity in autonomous vehicles, which are increasingly vulnerable due to their integration with IoT and IIoT systems. It explores the detection and mitigation of various cyber attacks such as Man-in-the-Middle, Distributed Denial of Service, Deauthentication, and Replay attacks using machine learning algorithms. The study highlights the superior performance of the Gradient Boosting algorithm in addressing these threats and provides a comprehensive overview of relevant literature, attack methodologies, and testing infrastructure. The research underscores the necessity of robust security measures to safeguard autonomous vehicles and their interconnected environment, making it a must-read for professionals seeking to advance countermeasures in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim, K., Kim, J.S., Jeong, S., Park, J.H., Kim, H.K.: Cybersecurity for autonomous vehicles: review of attacks and defense. Comput. Secur. 103, 102150 (2021)CrossRef Kim, K., Kim, J.S., Jeong, S., Park, J.H., Kim, H.K.: Cybersecurity for autonomous vehicles: review of attacks and defense. Comput. Secur. 103, 102150 (2021)CrossRef
2.
go back to reference Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to can bus. Briefing, Black Hat USA 25, 1–16 (2017) Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to can bus. Briefing, Black Hat USA 25, 1–16 (2017)
3.
go back to reference Lee, Y., Woo, S.: CAN Signal Extinction-based DoS Attack on In-Vehicle Network. Secur. Commun. Netw. 2022 (2022) Lee, Y., Woo, S.: CAN Signal Extinction-based DoS Attack on In-Vehicle Network. Secur. Commun. Netw. 2022 (2022)
4.
go back to reference Fowler, D.S., Bryans, J., Cheah, M., Wooderson, P., Shaikh, S.A.: A method for constructing automotive cybersecurity tests, a CAN fuzz testing example. In: 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 1–8. IEEE (2019) Fowler, D.S., Bryans, J., Cheah, M., Wooderson, P., Shaikh, S.A.: A method for constructing automotive cybersecurity tests, a CAN fuzz testing example. In: 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 1–8. IEEE (2019)
5.
go back to reference Lim, B.S., Keoh, S.L., Thing, V.L.: Autonomous vehicle ultrasonic sensor vulnerability and impact assessment. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 231–236). IEEE (2018) Lim, B.S., Keoh, S.L., Thing, V.L.: Autonomous vehicle ultrasonic sensor vulnerability and impact assessment. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 231–236). IEEE (2018)
6.
go back to reference Jakobsen, S.B., Knudsen, K.S., Andersen, B.: Analysis of sensor attacks against autonomous vehicles. In: 25th International Symposium on Wireless Personal Multimedia Communications. IEEE (2022) Jakobsen, S.B., Knudsen, K.S., Andersen, B.: Analysis of sensor attacks against autonomous vehicles. In: 25th International Symposium on Wireless Personal Multimedia Communications. IEEE (2022)
7.
go back to reference Eriksson, B., Groth, J., Sabelfeld, A.: On the road with third-party apps: security analysis of an in-vehicle app platform. In: VEHITS, pp. 64–75 (2019) Eriksson, B., Groth, J., Sabelfeld, A.: On the road with third-party apps: security analysis of an in-vehicle app platform. In: VEHITS, pp. 64–75 (2019)
8.
go back to reference Cai, Z., Wang, A., Zhang, W., Gruffke, M., Schweppe, H.: 0-days & mitigations: roadways to exploit and secure connected BMW cars. Black Hat USA 2019, 39 (2019) Cai, Z., Wang, A., Zhang, W., Gruffke, M., Schweppe, H.: 0-days & mitigations: roadways to exploit and secure connected BMW cars. Black Hat USA 2019, 39 (2019)
9.
go back to reference Zoppelt, M., Kolagari, R.T.: UnCle SAM: modeling cloud attacks with the automotive security abstraction model. Cloud Comput. 67–72 (2019) Zoppelt, M., Kolagari, R.T.: UnCle SAM: modeling cloud attacks with the automotive security abstraction model. Cloud Comput. 67–72 (2019)
10.
go back to reference Maple, C., Bradbury, M., Le, A.T., Ghirardello, K.: A connected and autonomous vehicle reference architecture for attack surface analysis. Appl. Sci. 9(23), 5101 (2019)CrossRef Maple, C., Bradbury, M., Le, A.T., Ghirardello, K.: A connected and autonomous vehicle reference architecture for attack surface analysis. Appl. Sci. 9(23), 5101 (2019)CrossRef
11.
go back to reference Miller, C., Valasek, C.:. Remote exploitation of an unaltered passenger vehicle. Black Hat USA, 2015(S 91), 1–91 (2015) Miller, C., Valasek, C.:. Remote exploitation of an unaltered passenger vehicle. Black Hat USA, 2015(S 91), 1–91 (2015)
12.
go back to reference Miller, C.: Lessons learned from hacking a car. IEEE Design & Test 36(6), 7–9 (2019)CrossRef Miller, C.: Lessons learned from hacking a car. IEEE Design & Test 36(6), 7–9 (2019)CrossRef
13.
go back to reference Woo, S., Moon, D., Youn, T.Y., Lee, Y., Kim, Y.: Can id shuffling technique (cist): moving target defense strategy for protecting in-vehicle can. IEEE Access 7, 15521–15536 (2019)CrossRef Woo, S., Moon, D., Youn, T.Y., Lee, Y., Kim, Y.: Can id shuffling technique (cist): moving target defense strategy for protecting in-vehicle can. IEEE Access 7, 15521–15536 (2019)CrossRef
14.
go back to reference Shrestha, R., Nam, S.Y.: Regional blockchain for vehicular networks to prevent 51% attacks. IEEE Access 7, 95033–95045 (2019)CrossRef Shrestha, R., Nam, S.Y.: Regional blockchain for vehicular networks to prevent 51% attacks. IEEE Access 7, 95033–95045 (2019)CrossRef
15.
go back to reference Nasser, A., Ma, D.: Defending AUTOSAR safety critical systems against code reuse attacks. In: Proceedings of the ACM Workshop on Automotive Cybersecurity, pp. 15–18 (2019) Nasser, A., Ma, D.: Defending AUTOSAR safety critical systems against code reuse attacks. In: Proceedings of the ACM Workshop on Automotive Cybersecurity, pp. 15–18 (2019)
16.
go back to reference Zhang, L., Ma, D.: A hybrid approach toward efficient and accurate intrusion detection for in-vehicle networks. IEEE Access 10, 10852–10866 (2022)CrossRef Zhang, L., Ma, D.: A hybrid approach toward efficient and accurate intrusion detection for in-vehicle networks. IEEE Access 10, 10852–10866 (2022)CrossRef
17.
go back to reference Zhou, J., Joshi, P., Zeng, H., Li, R.: Btmonitor: bit-time-based intrusion detection and attacker identification in controller area network. ACM Trans. Embed. Comput. Syst. (TECS) 18(6), 1–23 (2019)CrossRef Zhou, J., Joshi, P., Zeng, H., Li, R.: Btmonitor: bit-time-based intrusion detection and attacker identification in controller area network. ACM Trans. Embed. Comput. Syst. (TECS) 18(6), 1–23 (2019)CrossRef
18.
go back to reference Olufowobi, H., Hounsinou, S., Bloom, G.: Controller area network intrusion prevention system leveraging fault recovery. In: Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy, pp. 63–73 (2019) Olufowobi, H., Hounsinou, S., Bloom, G.: Controller area network intrusion prevention system leveraging fault recovery. In: Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy, pp. 63–73 (2019)
19.
go back to reference Hamad, M., Tsantekidis, M., Prevelakis, V.: Red-Zone: Towards an intrusion response framework for intra-vehicle system. In: VEHITS, pp. 148–158 (2019) Hamad, M., Tsantekidis, M., Prevelakis, V.: Red-Zone: Towards an intrusion response framework for intra-vehicle system. In: VEHITS, pp. 148–158 (2019)
20.
go back to reference Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 21, 100198 (2020) Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 21, 100198 (2020)
21.
go back to reference Tang, F., Kawamoto, Y., Kato, N., Liu, J.: Future intelligent and secure vehicular network toward 6G: Machine-learning approaches. Proc. IEEE 108(2), 292–307 (2019)CrossRef Tang, F., Kawamoto, Y., Kato, N., Liu, J.: Future intelligent and secure vehicular network toward 6G: Machine-learning approaches. Proc. IEEE 108(2), 292–307 (2019)CrossRef
22.
go back to reference Ahmad, U., Song, H., Bilal, A., Alazab, M., Jolfaei, A.: Securing smart vehicles from relay attacks using machine learning. J. Supercomput. 76, 2665–2682 (2020)CrossRef Ahmad, U., Song, H., Bilal, A., Alazab, M., Jolfaei, A.: Securing smart vehicles from relay attacks using machine learning. J. Supercomput. 76, 2665–2682 (2020)CrossRef
23.
go back to reference Gundu, R., Maleki, M.: Securing CAN bus in connected and autonomous vehicles using supervised machine learning approaches. In: 2022 IEEE International Conference on Electro Information Technology (eIT), pp. 042–046. IEEE (2022) Gundu, R., Maleki, M.: Securing CAN bus in connected and autonomous vehicles using supervised machine learning approaches. In: 2022 IEEE International Conference on Electro Information Technology (eIT), pp. 042–046. IEEE (2022)
24.
go back to reference Kumar, P., Kumar, R., Gupta, G.P., Tripathi, R.: BDEdge: blockchain and deep-learning for secure edge-envisioned green CAVs. IEEE Trans. Green Commun. Netw. 6(3), 1330–1339 (2022)CrossRef Kumar, P., Kumar, R., Gupta, G.P., Tripathi, R.: BDEdge: blockchain and deep-learning for secure edge-envisioned green CAVs. IEEE Trans. Green Commun. Netw. 6(3), 1330–1339 (2022)CrossRef
25.
go back to reference Alsulami, A.A., Abu Al-Haija, Q., Alqahtani, A., Alsini, R.: Symmetrical simulation scheme for anomaly detection in autonomous vehicles based on LSTM model. Symmetry 14(7), 1450 (2022)CrossRef Alsulami, A.A., Abu Al-Haija, Q., Alqahtani, A., Alsini, R.: Symmetrical simulation scheme for anomaly detection in autonomous vehicles based on LSTM model. Symmetry 14(7), 1450 (2022)CrossRef
Metadata
Title
Detection of Cyber Attacks Targeting Autonomous Vehicles Using Machine Learning
Authors
Furkan Onur
Mehmet Ali Barışkan
Serkan Gönen
Cemallettin Kubat
Mustafa Tunay
Ercan Nurcan Yılmaz
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_40

Premium Partners