Skip to main content
Top

2024 | OriginalPaper | Chapter

Detection of Man-in-the-Middle Attack Through Artificial Intelligence Algorithm

Authors : Ahmet Nail Taştan, Serkan Gönen, Mehmet Ali Barışkan, Cemallettin Kubat, Derya Yıltaş Kaplan, Elham Pashaei

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical issue of Man-in-the-Middle (MitM) attacks in IoT and IIoT systems, highlighting the escalating cybersecurity concerns in these increasingly interconnected environments. It presents a comprehensive detection mechanism employing machine learning algorithms, with a particular focus on the Random Forest algorithm. The evaluation of various algorithms reveals the Random Forest algorithm's superior efficacy, achieving an accuracy rate of 99.2%, an F1 score of 0.976, and a precision score of 0.977. The study also provides insightful recommendations for both practitioners and researchers, emphasizing the need for continuous updates and inter-disciplinary collaborations to enhance IoT and IIoT security. The research underscores the importance of prioritizing innovative solutions to safeguard these systems against evolving cyber threats, making it a valuable resource for professionals seeking to strengthen their cybersecurity strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Stallings, W., Brown, L.: Computer Security Principles and Practice. Second penyunt (2012) Stallings, W., Brown, L.: Computer Security Principles and Practice. Second penyunt (2012)
3.
go back to reference Von Solms, R., Van Niekerk, J.: From information security to cyber security. Comput. Secur. 38, 97–102 (2013)CrossRef Von Solms, R., Van Niekerk, J.: From information security to cyber security. Comput. Secur. 38, 97–102 (2013)CrossRef
4.
go back to reference Boyd, B.L.: Cyber warfare: armageddon in a teacup? Army Command and General Staff College, Fort Leavenworth, KS (2009) Boyd, B.L.: Cyber warfare: armageddon in a teacup? Army Command and General Staff College, Fort Leavenworth, KS (2009)
5.
go back to reference Toutsop, O., Harvey, P., Kornegay, K.: Monitoring and detection time optimization of man in the middle attacks using machine learning. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE (2020) Toutsop, O., Harvey, P., Kornegay, K.: Monitoring and detection time optimization of man in the middle attacks using machine learning. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE (2020)
6.
go back to reference Maniriho, P., et al.: Anomaly-based intrusion detection approach for IoT networks using machine learning. In: 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE (2020) Maniriho, P., et al.: Anomaly-based intrusion detection approach for IoT networks using machine learning. In: 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE (2020)
7.
go back to reference Sowah, R.A., et al.: Detection and prevention of man-in-the-middle spoofing attacks in MANETs using predictive techniques in Artificial Neural Networks (ANN). J. Comput. Netw. Commun. 2019, 4683982 (2019) Sowah, R.A., et al.: Detection and prevention of man-in-the-middle spoofing attacks in MANETs using predictive techniques in Artificial Neural Networks (ANN). J. Comput. Netw. Commun. 2019, 4683982 (2019)
8.
go back to reference Natarajan, J.: Cyber secure man-in-the-middle attack intrusion detection using machine learning algorithms. In: AI and Big Data’s Potential for Disruptive Innovation, pp. 291–316. IGI Global (2020) Natarajan, J.: Cyber secure man-in-the-middle attack intrusion detection using machine learning algorithms. In: AI and Big Data’s Potential for Disruptive Innovation, pp. 291–316. IGI Global (2020)
9.
go back to reference Kiran, K.S., et al.: Building an intrusion detection system for IoT environment using machine learning techniques. Procedia Comput. Sci. 171, 2372–2379 (2020)CrossRef Kiran, K.S., et al.: Building an intrusion detection system for IoT environment using machine learning techniques. Procedia Comput. Sci. 171, 2372–2379 (2020)CrossRef
10.
go back to reference Kang, J.J., Fahd, K., Venkatraman, S.: Trusted time-based verification model for automatic man-in-the-middle attack detection in cybersecurity. Cryptography 2(4), 38 (2018)CrossRef Kang, J.J., Fahd, K., Venkatraman, S.: Trusted time-based verification model for automatic man-in-the-middle attack detection in cybersecurity. Cryptography 2(4), 38 (2018)CrossRef
11.
go back to reference Mohapatra, H., et al.: Handling of a man-in-the-middle attack in WSN through intrusion detection system. Int. J. 8(5), 1503–1510 (2020) Mohapatra, H., et al.: Handling of a man-in-the-middle attack in WSN through intrusion detection system. Int. J. 8(5), 1503–1510 (2020)
13.
go back to reference Malik, S., Chauhan, R.: Securing the Internet of Things using machine learning: a review. In: 2020 International Conference on Convergence to Digital World-Quo Vadis (ICCDW). IEEE (2020) Malik, S., Chauhan, R.: Securing the Internet of Things using machine learning: a review. In: 2020 International Conference on Convergence to Digital World-Quo Vadis (ICCDW). IEEE (2020)
14.
go back to reference Diro, A., Chilamkurti, N.: Leveraging LSTM networks for attack detection in fog-to-things communications. IEEE Commun. Mag. 56(9), 124–130 (2018)CrossRef Diro, A., Chilamkurti, N.: Leveraging LSTM networks for attack detection in fog-to-things communications. IEEE Commun. Mag. 56(9), 124–130 (2018)CrossRef
17.
go back to reference Li, Y., et al.: A cross-layer defense scheme for edge intelligence-enabled CBTC systems against MitM attacks. IEEE Trans. Intell. Transp. Syst. 22(4), 2286–2298 (2020)CrossRef Li, Y., et al.: A cross-layer defense scheme for edge intelligence-enabled CBTC systems against MitM attacks. IEEE Trans. Intell. Transp. Syst. 22(4), 2286–2298 (2020)CrossRef
18.
go back to reference Saed, M., Aljuhani, A.: Detection of man in the middle attack using machine learning. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE (2022) Saed, M., Aljuhani, A.: Detection of man in the middle attack using machine learning. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE (2022)
20.
go back to reference Choi, J., et al.: Blockchain-based man-in-the-middle (MITM) attack detection for photovoltaic systems. In: 2021 IEEE Design Methodologies Conference (DMC). IEEE (2021) Choi, J., et al.: Blockchain-based man-in-the-middle (MITM) attack detection for photovoltaic systems. In: 2021 IEEE Design Methodologies Conference (DMC). IEEE (2021)
21.
go back to reference Wlazlo, P., et al.: Man-in-the-middle attacks and defense in a power system cyber-physical testbed. arXiv preprint arXiv:2102.11455 (2021) Wlazlo, P., et al.: Man-in-the-middle attacks and defense in a power system cyber-physical testbed. arXiv preprint arXiv:​2102.​11455 (2021)
Metadata
Title
Detection of Man-in-the-Middle Attack Through Artificial Intelligence Algorithm
Authors
Ahmet Nail Taştan
Serkan Gönen
Mehmet Ali Barışkan
Cemallettin Kubat
Derya Yıltaş Kaplan
Elham Pashaei
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_41

Premium Partners