Skip to main content
Top
Published in: Neural Computing and Applications 9/2019

02-02-2018 | Original Article

Detection of Schizophrenia in brain MR images based on segmented ventricle region and deep belief networks

Authors: Manohar Latha, Ganesan Kavitha

Published in: Neural Computing and Applications | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Schizophrenia (SZ) is a brain disorder that affects manifold cognitive domains which include language, memory, attention and executive functions. Magnetic resonance imaging is used to capture structural abnormalities in brain regions. Many studies have indicated brain region volume changes in Schizophrenia patients. In this work, an attempt has been made to analyze the schizophrenic subjects based on ventricle region using deep belief networks (DBNs). The effectiveness of the proposed method is evaluated on center of biomedical research excellence database. Initially, the ventricle region from the normal and SZ images is segmented using multiplicative intrinsic component optimization method. The DBN using different learning algorithms such as stochastic gradient descent (SGD), adaptive gradient (Adagrad) and root-mean-square propagation (RMSProp) is used to train the considered region. The effect of number of layers and the learning algorithm used to discriminate the normal and SZ subjects in DBN is analyzed. Then, the DBN model is evaluated on test set using accuracy, precision, sensitivity and specificity measures. The classification performance of the proposed system is analyzed using receiver operating characteristic curve. Further, the performance of DBN based on segmented ventricle is compared with region of interest (ROI) image that consists of ventricle along with other tissues. Here threefold validations are carried out for the same set of images. Results show that DBN with RMSProp learning with two hidden layers gives better performance compared to other learning methods such as SGD and Adagrad. In addition, DBN on segmented ventricle region gives least error compared to ROI image. DBN with segmented ventricle provides better classification accuracy of 90%. The proposed method achieves high area under the curve (0.899) for the segmented ventricle image, which clearly demonstrates its effectiveness. Thus, the DBN with RMSProp learning-based classification of segmented ventricle could be used as a supplement in the investigation of Schizophrenia.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pawan KS, Sarkar Ram (2015) A simple and effective expert system for schizophrenia detection. Int J Intell Syst Technol Appl 14(1):27–49 Pawan KS, Sarkar Ram (2015) A simple and effective expert system for schizophrenia detection. Int J Intell Syst Technol Appl 14(1):27–49
2.
go back to reference Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77CrossRef Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77CrossRef
3.
go back to reference Afsoon K, Gholam AHZ, Esmaeil SA (2015) Comparison of volumes of subcortical regions in Schizophrenia patients and healthy controls using MRI. In: Proceedings of the second international conference on pattern recognition and image analysis, Rasht, pp 1–5 Afsoon K, Gholam AHZ, Esmaeil SA (2015) Comparison of volumes of subcortical regions in Schizophrenia patients and healthy controls using MRI. In: Proceedings of the second international conference on pattern recognition and image analysis, Rasht, pp 1–5
4.
go back to reference Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2013) Brain volumes in Schizophrenia: a meta-analysis in over 18000 subjects. Schizophr Bull 39(5):1129–1138CrossRef Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2013) Brain volumes in Schizophrenia: a meta-analysis in over 18000 subjects. Schizophr Bull 39(5):1129–1138CrossRef
5.
go back to reference Naren PR, Venkatasubramanian G, Arasappa Rashmi, Gangadhar N (2011) Relationship between corpus callosum abnormalities and schneiderian first-rank symptoms in antipsychotic naive Schizophrenia patients. J Neuropsychiatry Clin Neurosci 23(2):155–162CrossRef Naren PR, Venkatasubramanian G, Arasappa Rashmi, Gangadhar N (2011) Relationship between corpus callosum abnormalities and schneiderian first-rank symptoms in antipsychotic naive Schizophrenia patients. J Neuropsychiatry Clin Neurosci 23(2):155–162CrossRef
6.
go back to reference Zhao G, Denisova K, Sehatpour P, Long J, Gui W, Qiao J, Javitt DC, Wang Z (2016) Fractal dimension analysis of subcortical gray matter structures in Schizophrenia. PLoS ONE 11(10):e0164910CrossRef Zhao G, Denisova K, Sehatpour P, Long J, Gui W, Qiao J, Javitt DC, Wang Z (2016) Fractal dimension analysis of subcortical gray matter structures in Schizophrenia. PLoS ONE 11(10):e0164910CrossRef
7.
go back to reference Sun Y, Chen Y, Collinson SL, Bezerianos A, Sim K (2017) Reduced hemispheric asymmetry of brain anatomical networks is linked to Schizophrenia: a connectome study. Cereb Cortex 27(1):602–615 Sun Y, Chen Y, Collinson SL, Bezerianos A, Sim K (2017) Reduced hemispheric asymmetry of brain anatomical networks is linked to Schizophrenia: a connectome study. Cereb Cortex 27(1):602–615
8.
go back to reference Takayanagi Y, Takahashi T, Orikabe L, Mozue Y, Kawasaki Y, Nakamura K, Sato Y et al (2011) Classification of first-episode Schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness. PLoS ONE 6(6):e21047CrossRef Takayanagi Y, Takahashi T, Orikabe L, Mozue Y, Kawasaki Y, Nakamura K, Sato Y et al (2011) Classification of first-episode Schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness. PLoS ONE 6(6):e21047CrossRef
9.
go back to reference Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS (2004) Ventricular enlargement in Schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 161(1):1–8CrossRef Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS (2004) Ventricular enlargement in Schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 161(1):1–8CrossRef
10.
go back to reference Del Re EC, Konishi J, Bouix S, Blokland GA, Mesholam-Gately RI, Goldstein J, Kubicki M, Wojcik J, Pasternak O, Seidman LJ, Petryshen T, Hirayasu Y, Niznikiewicz M, Shenton ME, McCarley RW (2016) Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging Behav 10(4):1264–1273CrossRef Del Re EC, Konishi J, Bouix S, Blokland GA, Mesholam-Gately RI, Goldstein J, Kubicki M, Wojcik J, Pasternak O, Seidman LJ, Petryshen T, Hirayasu Y, Niznikiewicz M, Shenton ME, McCarley RW (2016) Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging Behav 10(4):1264–1273CrossRef
11.
go back to reference Iwabuchi SJ, Liddle PF, Palaniyappan L (2015) Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational Neuroimaging. Front Psychiatr 4(95):1–9 Iwabuchi SJ, Liddle PF, Palaniyappan L (2015) Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational Neuroimaging. Front Psychiatr 4(95):1–9
12.
go back to reference Xiaobing L, Yang Y, Wu F, Gao M, Xu Y, Zhang Y et al (2016) Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine 95(30):e3973CrossRef Xiaobing L, Yang Y, Wu F, Gao M, Xu Y, Zhang Y et al (2016) Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine 95(30):e3973CrossRef
13.
go back to reference Goulda IC, Shepherda AM, Laurensa KR, Cairns MJ, Carra VJ, Greena MJ (2014) Multivariate neuroanatomical classification of cognitive subtypes in Schizophrenia: a support vector machine learning approach. NeuroImage Clin 6:229–236CrossRef Goulda IC, Shepherda AM, Laurensa KR, Cairns MJ, Carra VJ, Greena MJ (2014) Multivariate neuroanatomical classification of cognitive subtypes in Schizophrenia: a support vector machine learning approach. NeuroImage Clin 6:229–236CrossRef
14.
go back to reference Akanksha J, Bharti R, Agrawal RK (2016) Combination of singular value decomposition and multivariate feature selection method for diagnosis of Schizophrenia using fMRI. Biomed Signal Process Control 27:122–133CrossRef Akanksha J, Bharti R, Agrawal RK (2016) Combination of singular value decomposition and multivariate feature selection method for diagnosis of Schizophrenia using fMRI. Biomed Signal Process Control 27:122–133CrossRef
15.
go back to reference Schwarz D, Kasparek T (2014) Brain morphometry of MR images for automated classification of first-episode schizophrenia. Inf Fusion 19:97–102CrossRef Schwarz D, Kasparek T (2014) Brain morphometry of MR images for automated classification of first-episode schizophrenia. Inf Fusion 19:97–102CrossRef
16.
go back to reference Janousova E, Schwarz D, Kasparek T (2015) Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatr Res Neuroimaging 232:237–249CrossRef Janousova E, Schwarz D, Kasparek T (2015) Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatr Res Neuroimaging 232:237–249CrossRef
17.
go back to reference Sayo AI, Jennings RG, Van Horn JD (2012) Study factors influencing ventricular enlargement in schizophrenia: a 20 year follow-up meta-analysis. Neuroimage 59(1):154–167CrossRef Sayo AI, Jennings RG, Van Horn JD (2012) Study factors influencing ventricular enlargement in schizophrenia: a 20 year follow-up meta-analysis. Neuroimage 59(1):154–167CrossRef
18.
go back to reference Kempton MJ, Stahl D, Williams SCR, DeLisi LE (2010) Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 120:54–62CrossRef Kempton MJ, Stahl D, Williams SCR, DeLisi LE (2010) Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 120:54–62CrossRef
19.
go back to reference Eloy R, Oliver A, Cabezas M, Vilanovab JC, Rovirac A, Torrentad LR, Llado X (2014) MARGA: multispectral adaptive region growing algorithm for brain extraction on axial MRI. Comput Methods Programs Biomed 13(2):655–673 Eloy R, Oliver A, Cabezas M, Vilanovab JC, Rovirac A, Torrentad LR, Llado X (2014) MARGA: multispectral adaptive region growing algorithm for brain extraction on axial MRI. Comput Methods Programs Biomed 13(2):655–673
20.
go back to reference Li Chunming, John CG, Christos D (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923CrossRef Li Chunming, John CG, Christos D (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923CrossRef
21.
go back to reference Nara MP, George DCC, Tsang IR (2014) Semi-supervised clustering for MR brain image segmentation. Expert Syst Appl 41(4):1492–1497CrossRef Nara MP, George DCC, Tsang IR (2014) Semi-supervised clustering for MR brain image segmentation. Expert Syst Appl 41(4):1492–1497CrossRef
22.
go back to reference Yunjie C, Zhao Bo, Jianwei Z, Yuhui Z (2014) Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model. Magn Reson Imaging 32(7):941–955CrossRef Yunjie C, Zhao Bo, Jianwei Z, Yuhui Z (2014) Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model. Magn Reson Imaging 32(7):941–955CrossRef
23.
go back to reference Ke Gan (2015) Automated segmentation of the lateral ventricle in MR images of human brain. In: Proceedings of IEEE international conference on digital signal processing, Singapore, pp 139–142 Ke Gan (2015) Automated segmentation of the lateral ventricle in MR images of human brain. In: Proceedings of IEEE international conference on digital signal processing, Singapore, pp 139–142
24.
go back to reference Kayalvizhi M, Kavitha G, Sujatha CM, Ramakrishnan S (2015) Analysis of anatomical regions in Alzheimer’s brain MR images using level sets and Minkowski functional. J Mech Med Biol 15(2):1540024(1)–1540024(7)CrossRef Kayalvizhi M, Kavitha G, Sujatha CM, Ramakrishnan S (2015) Analysis of anatomical regions in Alzheimer’s brain MR images using level sets and Minkowski functional. J Mech Med Biol 15(2):1540024(1)–1540024(7)CrossRef
25.
go back to reference Julazadeh A, Alirezaie J, Babyn P (2012) A novel automated approach for segmenting lateral ventricle in MR images of the brain using sparse representation classification and dictionary learning. Proc Int Conf Inf Sci, Signal Process Appl: Main Tracks 978(1):889–893 Julazadeh A, Alirezaie J, Babyn P (2012) A novel automated approach for segmenting lateral ventricle in MR images of the brain using sparse representation classification and dictionary learning. Proc Int Conf Inf Sci, Signal Process Appl: Main Tracks 978(1):889–893
26.
go back to reference Martin L, Lars K, Amy L (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Syst 107046:1–9 Martin L, Lars K, Amy L (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Syst 107046:1–9
27.
go back to reference Ahmed MA, Ayman ME (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144CrossRef Ahmed MA, Ayman ME (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144CrossRef
28.
go back to reference Heung-II S, Dinggang S (2013) Deep learning based feature representation for AD/MCI Classification. Med Image Comput Comput-Assist Interv 16(02):583–590 Heung-II S, Dinggang S (2013) Deep learning based feature representation for AD/MCI Classification. Med Image Comput Comput-Assist Interv 16(02):583–590
29.
go back to reference Nima T, Kenji S (2017) Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs CNNs. Pattern Recognit 63:476–486CrossRef Nima T, Kenji S (2017) Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs CNNs. Pattern Recognit 63:476–486CrossRef
30.
go back to reference Sergey MP, Devon RH, Salakhutdinov R, Vince DC (2014) Deep learning for neuroimaging: a validation study. Front Neurosci 8(229):1–11 Sergey MP, Devon RH, Salakhutdinov R, Vince DC (2014) Deep learning for neuroimaging: a validation study. Front Neurosci 8(229):1–11
33.
go back to reference Eduardo C, Devon HR, Sergey MP, Laurent D, Jessica AT, Vince DC (2016) Deep independence network analysis of structural brain imaging: application to Schizophrenia. IEEE Trans Med Imaging 35(7):1729–1740CrossRef Eduardo C, Devon HR, Sergey MP, Laurent D, Jessica AT, Vince DC (2016) Deep independence network analysis of structural brain imaging: application to Schizophrenia. IEEE Trans Med Imaging 35(7):1729–1740CrossRef
34.
go back to reference Junghoe K, Vince DC, Eunsoo S, Jong HL (2016) Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of Schizophrenia. NeuroImage 124:127–146CrossRef Junghoe K, Vince DC, Eunsoo S, Jong HL (2016) Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of Schizophrenia. NeuroImage 124:127–146CrossRef
35.
go back to reference Pinaya WHL, Gadelha Ary, Doyle OM, Noto Cristiano, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6(38897):1–9 Pinaya WHL, Gadelha Ary, Doyle OM, Noto Cristiano, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6(38897):1–9
36.
go back to reference Çetin M, Christensen F, Abbott C, Stephen J, Mayer A, Cañive J, Bustillo J, Pearlson G, Calhoun VD (2014) Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage 97:117–126CrossRef Çetin M, Christensen F, Abbott C, Stephen J, Mayer A, Cañive J, Bustillo J, Pearlson G, Calhoun VD (2014) Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage 97:117–126CrossRef
37.
go back to reference Kangyu N, Xavier B, Tony C, Selim E (2009) Local histogram based segmentation using the Wasserstein Distance. Int J Comput Vision 84(1):97–111CrossRef Kangyu N, Xavier B, Tony C, Selim E (2009) Local histogram based segmentation using the Wasserstein Distance. Int J Comput Vision 84(1):97–111CrossRef
38.
go back to reference Soowoon K, Park B, Seop BS, Yang S (2016) Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recogn Lett 77:58–65CrossRef Soowoon K, Park B, Seop BS, Yang S (2016) Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recogn Lett 77:58–65CrossRef
39.
go back to reference Yadan L, Feng Z, Chao Xu (2014) Facial expression recognition via deep learning. IETE Tech Rev 32(5):347–355 Yadan L, Feng Z, Chao Xu (2014) Facial expression recognition via deep learning. IETE Tech Rev 32(5):347–355
42.
go back to reference Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th international conference on machine learning (ICML-13), 1139–1147 Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th international conference on machine learning (ICML-13), 1139–1147
43.
go back to reference Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH
44.
go back to reference Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw Mach Learn 4:26–31 Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw Mach Learn 4:26–31
45.
go back to reference Larochelle H, Bengio Y, Louradour J, Lamblin P (2009) Exploring strategies for training deep neural networks. J Mach Learn Res 10:1–40MATH Larochelle H, Bengio Y, Louradour J, Lamblin P (2009) Exploring strategies for training deep neural networks. J Mach Learn Res 10:1–40MATH
46.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH
Metadata
Title
Detection of Schizophrenia in brain MR images based on segmented ventricle region and deep belief networks
Authors
Manohar Latha
Ganesan Kavitha
Publication date
02-02-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3360-1

Other articles of this Issue 9/2019

Neural Computing and Applications 9/2019 Go to the issue

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Research on partial fingerprint recognition algorithm based on deep learning

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Emotion recognition based on physiological signals using brain asymmetry index and echo state network

Premium Partner