Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 9/2020

08-05-2020 | Research Article-Chemical Engineering

Determination of Pyrolysis Kinetics of Cellulose and Lignin Fractions Isolated from Selected Turkish Biomasses

Authors: Levent Ballice, Murat Sert, Mehmet Sağlam, Mithat Yüksel

Published in: Arabian Journal for Science and Engineering | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pyrolysis behavior of Turkish biomass samples such as hazelnut shell, almond shell, and sunflower stalk residue was studied using a thermogravimetric analysis (TGA) laboratory-scale setup. Biomass samples were characterized using the standard method of the Van Soest detergent analysis, and both the virgin biomass and fractions were investigated. The reaction temperature was increased to 900 °C with a heating rate range between 2 and 60 °C min−1 in the TGA experiments. Seven solid-state reaction models were applied to evaluate the obtained experimental TGA results. The heating rate was not the only parameter affecting the values of activation energy and the ratio of the main components such as the cellulose and lignin of the virgin biomass samples (almond shell, sunflower stalk, and hazelnut shell) also affected the value of the activated energy values. It was determined that a model fitting mechanism gives limited information to determine the exact activation energy values for the samples. The reaction order model provided straightforward and decisive results for all the biomass and lignin samples. Models of two- and three-dimensional diffusion were better suitable for the cellulose devolatilization. It was also determined that the activation energy of the lignin samples was similar regardless of the types of biomass. According to the kinetic calculations, the cellulose samples showed the highest activation energy values and the lignin samples had the lowest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moreno, M.A.P.; Manzano, E.S.; Moreno, A.J.P.: Biomass as renewable energy. Worldwide research trends. Sustainability 11, 863 (2019)CrossRef Moreno, M.A.P.; Manzano, E.S.; Moreno, A.J.P.: Biomass as renewable energy. Worldwide research trends. Sustainability 11, 863 (2019)CrossRef
2.
go back to reference Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D.: Biomass for energy: a review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020)CrossRef Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D.: Biomass for energy: a review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020)CrossRef
3.
go back to reference Kumara, B.; Bhardwaja, N.; Agrawala, K.; Chaturvedib, V.; Vermaa, P.: Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244 (2020)CrossRef Kumara, B.; Bhardwaja, N.; Agrawala, K.; Chaturvedib, V.; Vermaa, P.: Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244 (2020)CrossRef
4.
go back to reference Chena, W.H.; Wanga, C.W.; Ongd, H.C.; Showe, P.L.; Hsiehf, T.H.: Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168 (2019)CrossRef Chena, W.H.; Wanga, C.W.; Ongd, H.C.; Showe, P.L.; Hsiehf, T.H.: Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168 (2019)CrossRef
5.
go back to reference Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K.: Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 50, 10424–10433 (2011)CrossRef Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K.: Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 50, 10424–10433 (2011)CrossRef
6.
go back to reference Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C.: Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)CrossRef Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C.: Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)CrossRef
7.
go back to reference Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 24(8), 4470–4475 (2010)CrossRef Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 24(8), 4470–4475 (2010)CrossRef
8.
go back to reference Ohra-aho, T.; Linnekoski, J.: Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. J Anal Appl Pyrolysis 113, 186–192 (2015)CrossRef Ohra-aho, T.; Linnekoski, J.: Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. J Anal Appl Pyrolysis 113, 186–192 (2015)CrossRef
9.
go back to reference Hosoya, T.; Kawamoto, H.; Saka, S.: Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 80(1), 118–125 (2007)CrossRef Hosoya, T.; Kawamoto, H.; Saka, S.: Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 80(1), 118–125 (2007)CrossRef
10.
go back to reference Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L.: Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 126, 380–389 (2017)CrossRef Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L.: Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 126, 380–389 (2017)CrossRef
11.
go back to reference Gai, C.; Dong, Y.; Zhang, T.: The kinetic analysis of the pyrolysis of agriculture residue under non-isothermal conditions. Bioresour. Technol. 127, 298–305 (2013)CrossRef Gai, C.; Dong, Y.; Zhang, T.: The kinetic analysis of the pyrolysis of agriculture residue under non-isothermal conditions. Bioresour. Technol. 127, 298–305 (2013)CrossRef
12.
go back to reference Ferdous, D.; Dalai, A.K.; Bej, S.K.; Thring, R.W.: Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels 16, 1405–1412 (2002)CrossRef Ferdous, D.; Dalai, A.K.; Bej, S.K.; Thring, R.W.: Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels 16, 1405–1412 (2002)CrossRef
13.
go back to reference Giuntoli, J.; Arvelakis, S.; Spliethoff, H.; de Jong, W.; Verkooijen, A.H.M.: Quantitative and kinetic thermogravimetric fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments. Energy Fuels 23, 5695–5706 (2009)CrossRef Giuntoli, J.; Arvelakis, S.; Spliethoff, H.; de Jong, W.; Verkooijen, A.H.M.: Quantitative and kinetic thermogravimetric fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments. Energy Fuels 23, 5695–5706 (2009)CrossRef
14.
go back to reference Aboulkas, A.; El Harfi, K.; El Bouadili, A.K.; Benchanaa, M.; Mokhlisse, A.; Outzourit, A.: Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24, 15–33 (2007) Aboulkas, A.; El Harfi, K.; El Bouadili, A.K.; Benchanaa, M.; Mokhlisse, A.; Outzourit, A.: Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24, 15–33 (2007)
15.
go back to reference Lin, Y.C.; Cho, J.; Tompsett, G.A.; Westmoreland, P.R.; Huber, G.W.: Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113, 20097–20107 (2009)CrossRef Lin, Y.C.; Cho, J.; Tompsett, G.A.; Westmoreland, P.R.; Huber, G.W.: Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113, 20097–20107 (2009)CrossRef
16.
go back to reference Lora, J.H.; Glasser, W.G.: Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10, 39–48 (2002)CrossRef Lora, J.H.; Glasser, W.G.: Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10, 39–48 (2002)CrossRef
17.
go back to reference Mani, T.; Murugan, P.; Mahinpey, N.: Determination of distributed activation energy model kinetic parameters using simulated annealing optimization method for nonisothermal pyrolysis of lignin. Ind. Eng. Chem. Res. 48, 1464–1467 (2009)CrossRef Mani, T.; Murugan, P.; Mahinpey, N.: Determination of distributed activation energy model kinetic parameters using simulated annealing optimization method for nonisothermal pyrolysis of lignin. Ind. Eng. Chem. Res. 48, 1464–1467 (2009)CrossRef
18.
go back to reference Brebu, M.; Cazacu, G.; Chirila, O.: Pyrolysis of lignin—a potential method for obtaining chemicals and/or fuels. Cellul. Chem. Technol. 45, 43–50 (2011) Brebu, M.; Cazacu, G.; Chirila, O.: Pyrolysis of lignin—a potential method for obtaining chemicals and/or fuels. Cellul. Chem. Technol. 45, 43–50 (2011)
19.
go back to reference Min, K.: Vapor-phase thermal analysis of pyrolysis products from cellulosic materials. Combust. Flame 30, 285–294 (1977)CrossRef Min, K.: Vapor-phase thermal analysis of pyrolysis products from cellulosic materials. Combust. Flame 30, 285–294 (1977)CrossRef
20.
go back to reference Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.: Characterization and prediction of biomass pyrolysis products. Fuel Energy Abstr. 37(5), 611–630 (2011) Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.: Characterization and prediction of biomass pyrolysis products. Fuel Energy Abstr. 37(5), 611–630 (2011)
21.
go back to reference Aggarwal, P.; Dollimore, D.; Heon, K.: Comparative thermal analysis study of two biopolymers, starch and cellulose. J. Therm. Anal. 50, 7–17 (1997)CrossRef Aggarwal, P.; Dollimore, D.; Heon, K.: Comparative thermal analysis study of two biopolymers, starch and cellulose. J. Therm. Anal. 50, 7–17 (1997)CrossRef
22.
go back to reference Jun-Ho, J.; Seung-Soo, K.; Jae-Wook, S.; Ye-Eun, L.; Yeong-Seok, Y.: Pyrolysis characteristics and kinetics of food wastes. Energies 10(8), 1191 (2017)CrossRef Jun-Ho, J.; Seung-Soo, K.; Jae-Wook, S.; Ye-Eun, L.; Yeong-Seok, Y.: Pyrolysis characteristics and kinetics of food wastes. Energies 10(8), 1191 (2017)CrossRef
23.
go back to reference Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H.: Pyrolytic behavior and kinetic analysis of wheat straw and lignocellulosic biomass model compound. Adv. Mater. Res. 860–863, 550–554 (2013) Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H.: Pyrolytic behavior and kinetic analysis of wheat straw and lignocellulosic biomass model compound. Adv. Mater. Res. 860–863, 550–554 (2013)
24.
go back to reference Chan, R.W.; Krieger, B.B.: Kinetics of dielectric-loss microwave degradation of polymers: lignin. J. Appl. Polym. Sci. 26, 1533–1553 (1981)CrossRef Chan, R.W.; Krieger, B.B.: Kinetics of dielectric-loss microwave degradation of polymers: lignin. J. Appl. Polym. Sci. 26, 1533–1553 (1981)CrossRef
25.
go back to reference Nunn, T.R.; Howard, J.B.; Longwell, J.P.; Peters, W.A.: Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process Des. Dev. 24, 844–852 (1985)CrossRef Nunn, T.R.; Howard, J.B.; Longwell, J.P.; Peters, W.A.: Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process Des. Dev. 24, 844–852 (1985)CrossRef
26.
go back to reference Caballero, J.A.; Font, R.A.; Marcilla, J.; Conesa, A.: New kinetic model for thermal decomposition of heterogeneous materials. Ind. Eng. Chem. Res. 34(3), 806–812 (1995)CrossRef Caballero, J.A.; Font, R.A.; Marcilla, J.; Conesa, A.: New kinetic model for thermal decomposition of heterogeneous materials. Ind. Eng. Chem. Res. 34(3), 806–812 (1995)CrossRef
27.
go back to reference Li, B.; Lv, W.; Zhang, Q.; Wang, T.; Ma, L.: Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J. Anal. Appl. Pyrolysis 108, 295–300 (2014)CrossRef Li, B.; Lv, W.; Zhang, Q.; Wang, T.; Ma, L.: Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J. Anal. Appl. Pyrolysis 108, 295–300 (2014)CrossRef
28.
go back to reference Caballero, J.A.; Font, R.; Marcilla, A.: Study of the primary pyrolysis of Kraft lignin at high heating rates: yields and kinetics. J. Anal. Appl. Pyrolysis 36, 159–178 (1996)CrossRef Caballero, J.A.; Font, R.; Marcilla, A.: Study of the primary pyrolysis of Kraft lignin at high heating rates: yields and kinetics. J. Anal. Appl. Pyrolysis 36, 159–178 (1996)CrossRef
29.
go back to reference Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: A systematic study of the kinetics of lignin pyrolysis. Thermochim. Acta 498, 61–66 (2010)CrossRef Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: A systematic study of the kinetics of lignin pyrolysis. Thermochim. Acta 498, 61–66 (2010)CrossRef
30.
go back to reference Erdogan, C.;, Strossman, C.: Turkey tree nuts annual report. Global Agricultural International Network. Gain Report-TR8029, pp. 1–4 (2018) Erdogan, C.;, Strossman, C.: Turkey tree nuts annual report. Global Agricultural International Network. Gain Report-TR8029, pp. 1–4 (2018)
31.
go back to reference Konyalı, S.: Sunflower production, consumption, foreign trade and agricultural policies in Turkey. Soc. Sci. Res. J. 6(4), 11–19 (2017) Konyalı, S.: Sunflower production, consumption, foreign trade and agricultural policies in Turkey. Soc. Sci. Res. J. 6(4), 11–19 (2017)
32.
go back to reference VanSoest, P.J.; Robertson, J.B.; Lewis, B.A.: Symposium: carbonhydrate methodology, metabolism and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)CrossRef VanSoest, P.J.; Robertson, J.B.; Lewis, B.A.: Symposium: carbonhydrate methodology, metabolism and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)CrossRef
33.
go back to reference Kahrizsangi, R.E.; Abbasi, M.H.: Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 18, 217–221 (2008)CrossRef Kahrizsangi, R.E.; Abbasi, M.H.: Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 18, 217–221 (2008)CrossRef
34.
go back to reference Várhegyi, G.; Antal, J.; Jakab, E.; Szabó, P.: Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis 42, 73–87 (1997)CrossRef Várhegyi, G.; Antal, J.; Jakab, E.; Szabó, P.: Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis 42, 73–87 (1997)CrossRef
35.
go back to reference Yan, R.; Yang, H.P.; Chin, T.; Liang, D.T.; Chen, H.P.; Zheng, C.G.: Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes. Combust. Flame 142, 24–32 (2005)CrossRef Yan, R.; Yang, H.P.; Chin, T.; Liang, D.T.; Chen, H.P.; Zheng, C.G.: Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes. Combust. Flame 142, 24–32 (2005)CrossRef
36.
go back to reference Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W.: Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007)CrossRef Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W.: Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007)CrossRef
37.
go back to reference Guerrero, M.B.; Beceiro, J.L.; Jiménez, P.E.S.; Cosp, J.P.: Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 581, 70–86 (2014)CrossRef Guerrero, M.B.; Beceiro, J.L.; Jiménez, P.E.S.; Cosp, J.P.: Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 581, 70–86 (2014)CrossRef
38.
go back to reference Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C.: Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. 68, 753–763 (2013)CrossRef Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C.: Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. 68, 753–763 (2013)CrossRef
39.
go back to reference Jensen, A.; Dam-Johansen, K.; Wójtowicz, M.A.; Serio, M.A.: TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuels 12, 929–938 (1998)CrossRef Jensen, A.; Dam-Johansen, K.; Wójtowicz, M.A.; Serio, M.A.: TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuels 12, 929–938 (1998)CrossRef
40.
go back to reference Brebu, M.; Vasile, C.: Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44(9), 353–363 (2010) Brebu, M.; Vasile, C.: Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44(9), 353–363 (2010)
Metadata
Title
Determination of Pyrolysis Kinetics of Cellulose and Lignin Fractions Isolated from Selected Turkish Biomasses
Authors
Levent Ballice
Murat Sert
Mehmet Sağlam
Mithat Yüksel
Publication date
08-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 9/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04594-4

Other articles of this Issue 9/2020

Arabian Journal for Science and Engineering 9/2020 Go to the issue

Premium Partners