Skip to main content
Top
Published in: Wireless Networks 4/2020

20-05-2019

Deterministic pilot design for structured sparse channel estimation in MISO systems

Authors: Jun Cai, Xueyun He, Hong Wang, Rongfang Song

Published in: Wireless Networks | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To reduce the pilot overhead, compressive sensing techniques have been widely adopted for sparse channel estimation. In this paper, we explore the spatial common sparsity across different channels and investigate the deterministic pilot design with superimposed pattern for the downlink channel estimation in multi-input single-output systems. Previous works generally allocate pilots randomly when using the superimposed pilots to estimate the jointly sparse channels, which is storage-hungry and time-consuming. For the joint optimization of pilot locations and symbols, this paper proposes two pilot design schemes, named by Algorithms 1 and 2, to minimize the intrablock and interblock coherence simultaneously. Algorithm 1 sequentially optimizes pilot locations and symbols, while Algorithm 2 integrates the allocation of pilot symbols into the optimization of pilot locations and alternately optimizes the pilot locations and symbols. Both schemes can flexibly select the design criteria to ensure the small intrablock and interblock coherence. Simulation results show that the proposed pilot designs outperform the existing ones in terms of channel estimate mean-squared-error and bit-error-rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Elderini, T., Kaabouch, N., & Reyes, H. (2017). Channel quality estimation metrics in cognitive radio networks: a survey. IET Communications,11(8), 1173–1179.CrossRef Elderini, T., Kaabouch, N., & Reyes, H. (2017). Channel quality estimation metrics in cognitive radio networks: a survey. IET Communications,11(8), 1173–1179.CrossRef
2.
go back to reference Ramireddy, V., Grossmann, M., Landmann, M., Zetik, R., & Galdo, G. D. (2016). Linear baseband precoding strategies for millimeter wave MIMO multi-X channels. In IEEE international symposium on personal, indoor, and mobile radio communications (pp. 1-7). IEEE. Ramireddy, V., Grossmann, M., Landmann, M., Zetik, R., & Galdo, G. D. (2016). Linear baseband precoding strategies for millimeter wave MIMO multi-X channels. In IEEE international symposium on personal, indoor, and mobile radio communications (pp. 1-7). IEEE.
3.
go back to reference Hu, A. (2017). Channel estimation for interference mitigation in millimeter-wave multi-cell beamspace MIMO systems. Journal of Communications & Networks,19(4), 371–383.MathSciNetCrossRef Hu, A. (2017). Channel estimation for interference mitigation in millimeter-wave multi-cell beamspace MIMO systems. Journal of Communications & Networks,19(4), 371–383.MathSciNetCrossRef
4.
go back to reference Dardari, D., Closas, P., & Djurić, P. M. (2015). Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology,64(4), 1263–1278.CrossRef Dardari, D., Closas, P., & Djurić, P. M. (2015). Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology,64(4), 1263–1278.CrossRef
5.
go back to reference Lin, Y. P., Tseng, P. H., & Feng, K. T. (2015). Compressive sensing based location estimation using channel impulse response measurements. In IEEE international symposium on personal, indoor, and mobile radio communication (pp. 2066–2070). IEEE. Lin, Y. P., Tseng, P. H., & Feng, K. T. (2015). Compressive sensing based location estimation using channel impulse response measurements. In IEEE international symposium on personal, indoor, and mobile radio communication (pp. 2066–2070). IEEE.
6.
go back to reference Peng, L., Li, H., Xu, G., & Lei, P. (2013). Threat on physical layer security: Side channel vs. Wiretap channel. In IEEE international conference on computational science and engineering (pp. 295–300). IEEE Computer Society. Peng, L., Li, H., Xu, G., & Lei, P. (2013). Threat on physical layer security: Side channel vs. Wiretap channel. In IEEE international conference on computational science and engineering (pp. 295–300). IEEE Computer Society.
7.
go back to reference He, X., & Yener, A. (2010). Providing secrecy irrespective of eavesdropper’s channel state. In Global telecommunications conference (pp. 1–5). IEEE. He, X., & Yener, A. (2010). Providing secrecy irrespective of eavesdropper’s channel state. In Global telecommunications conference (pp. 1–5). IEEE.
8.
go back to reference Pakrooh, P., Amini, A., & Marvasti, F. (2012). OFDM pilot allocation for sparse channel estimation. EURASIP Journal on Advances in Signal Processing,2012(1), 59.CrossRef Pakrooh, P., Amini, A., & Marvasti, F. (2012). OFDM pilot allocation for sparse channel estimation. EURASIP Journal on Advances in Signal Processing,2012(1), 59.CrossRef
9.
go back to reference He, X., & Song, R. (2010). Pilot pattern optimization for compressed sensing based sparse channel estimation in OFDM systems. In International conference on wireless communications and signal processing (pp. 1–5). IEEE. He, X., & Song, R. (2010). Pilot pattern optimization for compressed sensing based sparse channel estimation in OFDM systems. In International conference on wireless communications and signal processing (pp. 1–5). IEEE.
10.
go back to reference He, X., Song, R., & Zhu, W. P. (2012). Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM systems. Circuits Systems & Signal Processing,31(4), 1379–1395.MathSciNetCrossRef He, X., Song, R., & Zhu, W. P. (2012). Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM systems. Circuits Systems & Signal Processing,31(4), 1379–1395.MathSciNetCrossRef
11.
go back to reference Qi, C., & Wu, L. (2011). Optimized pilot placement for sparse channel estimation in OFDM systems. IEEE Signal Processing Letters,18(12), 749–752.CrossRef Qi, C., & Wu, L. (2011). Optimized pilot placement for sparse channel estimation in OFDM systems. IEEE Signal Processing Letters,18(12), 749–752.CrossRef
12.
go back to reference Qi, C., & Wu, L. (2012). A study of deterministic pilot allocation for sparse channel estimation in OFDM systems. IEEE Communications Letters,16(5), 742–744.CrossRef Qi, C., & Wu, L. (2012). A study of deterministic pilot allocation for sparse channel estimation in OFDM systems. IEEE Communications Letters,16(5), 742–744.CrossRef
13.
go back to reference Qi, C., Yue, G., Wu, L., & Nallanathan, A. (2014). Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Transactions on Vehicular Technology,63(2), 982–987.CrossRef Qi, C., Yue, G., Wu, L., & Nallanathan, A. (2014). Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Transactions on Vehicular Technology,63(2), 982–987.CrossRef
14.
go back to reference Qi, C., Yue, G., Wu, L., Huang, Y., & Nallanathan, A. (2015). Pilot design schemes for sparse channel estimation in OFDM systems. IEEE Transactions on Vehicular Technology,64(4), 1493–1505.CrossRef Qi, C., Yue, G., Wu, L., Huang, Y., & Nallanathan, A. (2015). Pilot design schemes for sparse channel estimation in OFDM systems. IEEE Transactions on Vehicular Technology,64(4), 1493–1505.CrossRef
15.
go back to reference Chen, J. C., Wen, C. K., & Ting, P. (2013). An efficient pilot design scheme for sparse channel estimation in OFDM systems. IEEE Communications Letters,17(7), 1352–1355.CrossRef Chen, J. C., Wen, C. K., & Ting, P. (2013). An efficient pilot design scheme for sparse channel estimation in OFDM systems. IEEE Communications Letters,17(7), 1352–1355.CrossRef
16.
go back to reference Najjar, L. (2014). Pilot allocation by Genetic Algorithms for sparse channel estimation in OFDM systems. In Signal processing conference (pp. 1–5). IEEE. Najjar, L. (2014). Pilot allocation by Genetic Algorithms for sparse channel estimation in OFDM systems. In Signal processing conference (pp. 1–5). IEEE.
17.
go back to reference Wang, H., Guo, Q., Zhang, G., Li, G., & Xiang, W. (2015). Pilot pattern optimization for sparse channel estimation in OFDM systems. IEEE Communications Letters,19(7), 1233–1236.CrossRef Wang, H., Guo, Q., Zhang, G., Li, G., & Xiang, W. (2015). Pilot pattern optimization for sparse channel estimation in OFDM systems. IEEE Communications Letters,19(7), 1233–1236.CrossRef
18.
go back to reference Khosravi, M., & Mashhadi, S. (2015). Joint pilot power & pattern design for compressive OFDM channel estimation. IEEE Communications Letters,19(1), 50–53.CrossRef Khosravi, M., & Mashhadi, S. (2015). Joint pilot power & pattern design for compressive OFDM channel estimation. IEEE Communications Letters,19(1), 50–53.CrossRef
19.
go back to reference Qi, C., Wu, L., Huang, Y., & Nallanathan, A. (2015). Joint design of pilot power and pilot pattern for sparse cognitive radio systems. IEEE Transactions on Vehicular Technology,64(11), 5384–5390.CrossRef Qi, C., Wu, L., Huang, Y., & Nallanathan, A. (2015). Joint design of pilot power and pilot pattern for sparse cognitive radio systems. IEEE Transactions on Vehicular Technology,64(11), 5384–5390.CrossRef
20.
go back to reference Mohammadian, R., Amini, A., & Khalaj, B. H. (2017). Compressive sensing-based pilot design for sparse channel estimation in OFDM systems. IEEE Communications Letters,21(1), 4–7.CrossRef Mohammadian, R., Amini, A., & Khalaj, B. H. (2017). Compressive sensing-based pilot design for sparse channel estimation in OFDM systems. IEEE Communications Letters,21(1), 4–7.CrossRef
21.
go back to reference He, X., Song, R., & Zhu, W. P. (2013). Pilot allocation for sparse channel estimation in MIMO-OFDM systems. IEEE Transactions on Circuits and Systems II: Express Briefs,60(9), 612–616.CrossRef He, X., Song, R., & Zhu, W. P. (2013). Pilot allocation for sparse channel estimation in MIMO-OFDM systems. IEEE Transactions on Circuits and Systems II: Express Briefs,60(9), 612–616.CrossRef
22.
go back to reference He, X., Song, R., & Zhu, W. P. (2016). Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems. IEEE Transactions on Vehicular Technology,65(5), 2990–3004.CrossRef He, X., Song, R., & Zhu, W. P. (2016). Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems. IEEE Transactions on Vehicular Technology,65(5), 2990–3004.CrossRef
23.
go back to reference Mohammadian, R., Amini, A., Khalaj, B. H., & Omidvar, N. (2015). MIMO-OFDM pilot symbol design for sparse channel estimation. In Asia-Pacific signal and information processing association summit and conference (pp. 975–980). IEEE. Mohammadian, R., Amini, A., Khalaj, B. H., & Omidvar, N. (2015). MIMO-OFDM pilot symbol design for sparse channel estimation. In Asia-Pacific signal and information processing association summit and conference (pp. 975–980). IEEE.
24.
go back to reference Hou, W., & Lim, C. W. (2014). Structured compressive channel estimation for large-scale miso-OFDM systems. IEEE Communications Letters,18(5), 765–768.CrossRef Hou, W., & Lim, C. W. (2014). Structured compressive channel estimation for large-scale miso-OFDM systems. IEEE Communications Letters,18(5), 765–768.CrossRef
25.
go back to reference Gao, Z., Dai, L., & Wang, Z. (2015). Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electronics Letters,50(12), 896–898.CrossRef Gao, Z., Dai, L., & Wang, Z. (2015). Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electronics Letters,50(12), 896–898.CrossRef
26.
go back to reference Nan, Y., Zhang, L., & Sun, X. (2015). Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems. IEEE Wireless Communications Letters,4(4), 345–348.CrossRef Nan, Y., Zhang, L., & Sun, X. (2015). Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems. IEEE Wireless Communications Letters,4(4), 345–348.CrossRef
27.
go back to reference Ren, X., Chen, W., & Wang, Z. (2013). Low coherence compressed channel estimation for high mobility MIMO OFDM systems. In Global communications conference (pp. 3389–3393). IEEE. Ren, X., Chen, W., & Wang, Z. (2013). Low coherence compressed channel estimation for high mobility MIMO OFDM systems. In Global communications conference (pp. 3389–3393). IEEE.
28.
go back to reference Xu, C., Zhang, J., Liu, M., & Yin, C. (2016). Pilot design for sparse channel estimation in large-scale MIMO-OFDM system. International Journal of Antennas and Propagation, 2016, 8. Xu, C., Zhang, J., Liu, M., & Yin, C. (2016). Pilot design for sparse channel estimation in large-scale MIMO-OFDM system. International Journal of Antennas and Propagation, 2016, 8.
29.
go back to reference Mohammadian, R., Amini, A., & Khalaj, B. H. (2017). Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems. IEEE Transactions on Wireless Communications,16(1), 129–140.CrossRef Mohammadian, R., Amini, A., & Khalaj, B. H. (2017). Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems. IEEE Transactions on Wireless Communications,16(1), 129–140.CrossRef
30.
go back to reference Yang, N., Xin, S., & Li, Z. (2016). Near-optimal pilot allocation in sparse channel estimation for massive MIMO OFDM systems. In International symposium on wireless communication systems (pp. 401–405). IEEE. Yang, N., Xin, S., & Li, Z. (2016). Near-optimal pilot allocation in sparse channel estimation for massive MIMO OFDM systems. In International symposium on wireless communication systems (pp. 401–405). IEEE.
31.
go back to reference Wang, X., Wang, J., Ma, X., & Pan, C. (2016). Pilot allocation for MIMO-OFDM systems: A structured compressive sensing perspective. In Wireless communications and mobile computing conference (pp. 227–232). IEEE. Wang, X., Wang, J., Ma, X., & Pan, C. (2016). Pilot allocation for MIMO-OFDM systems: A structured compressive sensing perspective. In Wireless communications and mobile computing conference (pp. 227–232). IEEE.
32.
go back to reference Cai, J., He, X., & Song, R. (2018). Pilot optimization for structured compressive sensing based channel estimation in large-scale MIMO systems with superimposed pilot pattern. Wireless Personal Communications,100(3), 977–993.CrossRef Cai, J., He, X., & Song, R. (2018). Pilot optimization for structured compressive sensing based channel estimation in large-scale MIMO systems with superimposed pilot pattern. Wireless Personal Communications,100(3), 977–993.CrossRef
33.
go back to reference Tropp, J. A. (2004). Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory,50(10), 2231–2242.MathSciNetCrossRef Tropp, J. A. (2004). Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory,50(10), 2231–2242.MathSciNetCrossRef
34.
go back to reference Elad, M. (2007). Optimized projections for compressed sensing. IEEE Transactions on Signal Processing,55(12), 5695–5702.MathSciNetCrossRef Elad, M. (2007). Optimized projections for compressed sensing. IEEE Transactions on Signal Processing,55(12), 5695–5702.MathSciNetCrossRef
35.
go back to reference Eldar, Y. C., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing,58(6), 3042–3054.MathSciNetCrossRef Eldar, Y. C., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing,58(6), 3042–3054.MathSciNetCrossRef
36.
go back to reference Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: from theory to applications. IEEE Transactions on Signal Processing,59(9), 4053–4085.MathSciNetCrossRef Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: from theory to applications. IEEE Transactions on Signal Processing,59(9), 4053–4085.MathSciNetCrossRef
37.
go back to reference Taubock, G., & Hlawatsch, F. (2008). A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots. In IEEE international conference on acoustics, speech, and signal processing (pp. 2885–2888). Taubock, G., & Hlawatsch, F. (2008). A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots. In IEEE international conference on acoustics, speech, and signal processing (pp. 2885–2888).
38.
go back to reference Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing,4(2), 255–271.CrossRef Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing,4(2), 255–271.CrossRef
39.
go back to reference Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. (2010). Compressed channel sensing: a new approach to estimating sparse multipath channels. Proceedings of the IEEE,98(6), 1058–1076.CrossRef Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. (2010). Compressed channel sensing: a new approach to estimating sparse multipath channels. Proceedings of the IEEE,98(6), 1058–1076.CrossRef
40.
go back to reference Calderbank, R., Thompson, A., & Xie, Y. (2015). On block coherence of frames. Applied and Computational Harmonic Analysis,38(1), 50–71.MathSciNetCrossRef Calderbank, R., Thompson, A., & Xie, Y. (2015). On block coherence of frames. Applied and Computational Harmonic Analysis,38(1), 50–71.MathSciNetCrossRef
41.
go back to reference Prasad, R., Murthy, C. R., & Rao, B. D. (2014). Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning. IEEE Transactions on Signal Processing,62(14), 3591–3603.MathSciNetCrossRef Prasad, R., Murthy, C. R., & Rao, B. D. (2014). Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning. IEEE Transactions on Signal Processing,62(14), 3591–3603.MathSciNetCrossRef
42.
go back to reference Ben-Haim, Z., & Eldar, Y. C. (2011). Near-oracle performance of greedy block-sparse estimation techniques from noisy measurements. IEEE Journal of Selected Topics in Signal Processing,5(5), 1032–1047.CrossRef Ben-Haim, Z., & Eldar, Y. C. (2011). Near-oracle performance of greedy block-sparse estimation techniques from noisy measurements. IEEE Journal of Selected Topics in Signal Processing,5(5), 1032–1047.CrossRef
Metadata
Title
Deterministic pilot design for structured sparse channel estimation in MISO systems
Authors
Jun Cai
Xueyun He
Hong Wang
Rongfang Song
Publication date
20-05-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02028-0

Other articles of this Issue 4/2020

Wireless Networks 4/2020 Go to the issue