Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Development and Characterization of Photoresponsive Polymers

Authors : Florica Adriana Jerca, Valentin Victor Jerca, Izabela-Cristina Stancu

Published in: Polymer and Photonic Materials Towards Biomedical Breakthroughs

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymeric materials that respond to light stimulus represent an important research area in the field of biomaterials. Light-responsive biomaterials have received significant attention due to their ability to provide spatially and temporally control and their potential to be less invasive. In this book chapter, we highlight the exciting progress realized in the biomedical field in recent years on photoresponsive polymeric systems. More precisely, we discuss the rational design of photoactive compounds, the role they have in the photoresponsive systems, the underlying principles behind photoresponsive behavior, and the subsequent applications in the biomaterial field. We also present the progress made in the field of photopharmacology, photoregulated drug delivery, and bioimaging, emphasizing the advantages on the basis of different architectures such as micelles, hydrogels, nanoparticles, and photoresponsive supramolecular assemblies. Finally, analytical techniques used to characterize the photoresponsive materials are expound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Schattling, F.D. Jochum, P. Theato, Multi-stimuli responsive polymers—the all-in-one talents. Polym. Chem. 5, 25–36 (2014)CrossRef P. Schattling, F.D. Jochum, P. Theato, Multi-stimuli responsive polymers—the all-in-one talents. Polym. Chem. 5, 25–36 (2014)CrossRef
2.
go back to reference R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428, 487–492 (2004)CrossRef R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428, 487–492 (2004)CrossRef
3.
go back to reference M.C. Stuart, W.T.S. Huck, J. Genzer, et al., Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)CrossRef M.C. Stuart, W.T.S. Huck, J. Genzer, et al., Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)CrossRef
4.
go back to reference Y. Zhao, Light-responsive block copolymer micelles. Macromolecules 45, 3647–3657 (2012)CrossRef Y. Zhao, Light-responsive block copolymer micelles. Macromolecules 45, 3647–3657 (2012)CrossRef
5.
go back to reference J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, Light-responsive block copolymers. Macromol. Rapid Commun. 31, 1588–1607 (2010)CrossRef J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, Light-responsive block copolymers. Macromol. Rapid Commun. 31, 1588–1607 (2010)CrossRef
6.
go back to reference J.S. Katz, J.A. Burdick, Light-responsive biomaterials: development and applications. Macromol. Biosci. 10, 339–348 (2010)CrossRef J.S. Katz, J.A. Burdick, Light-responsive biomaterials: development and applications. Macromol. Biosci. 10, 339–348 (2010)CrossRef
7.
go back to reference A. Goulet-Hanssens, C.J. Barrett, Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. A Polym. Chem. 51, 3058–3070 (2013)CrossRef A. Goulet-Hanssens, C.J. Barrett, Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. A Polym. Chem. 51, 3058–3070 (2013)CrossRef
8.
go back to reference F. Ercole, T.P. Davis, R.A. Evans, Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem. 1, 37–54 (2010)CrossRef F. Ercole, T.P. Davis, R.A. Evans, Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem. 1, 37–54 (2010)CrossRef
9.
go back to reference T. Ikeda, Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003)CrossRef T. Ikeda, Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003)CrossRef
10.
go back to reference M.C. Spiridon, K. Iliopoulos, F.A. Jerca, et al., Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage. Dyes Pigments 114, 24–32 (2015)CrossRef M.C. Spiridon, K. Iliopoulos, F.A. Jerca, et al., Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage. Dyes Pigments 114, 24–32 (2015)CrossRef
11.
go back to reference J.A. Delaire, K. Nakatani, Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000)CrossRef J.A. Delaire, K. Nakatani, Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000)CrossRef
12.
go back to reference F.D. Jochum, P. Theato, Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013)CrossRef F.D. Jochum, P. Theato, Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013)CrossRef
13.
go back to reference H. Tian, Z. Tang, X. Zhuang, et al., Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237–280 (2012)CrossRef H. Tian, Z. Tang, X. Zhuang, et al., Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237–280 (2012)CrossRef
14.
go back to reference G. Pasparakis, T. Manouras, P. Argitis, et al., Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun. 33, 183–198 (2012)CrossRef G. Pasparakis, T. Manouras, P. Argitis, et al., Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun. 33, 183–198 (2012)CrossRef
15.
go back to reference B.H. Cumpston, S.P. Ananthavel, S. Barlow, et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)CrossRef B.H. Cumpston, S.P. Ananthavel, S. Barlow, et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)CrossRef
16.
go back to reference H.Y. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRef H.Y. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRef
17.
go back to reference A. Lendlein, H.Y. Jiang, O. Junger, et al., Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRef A. Lendlein, H.Y. Jiang, O. Junger, et al., Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRef
18.
go back to reference T. Ikeda, M. Nakano, Y.L. Yu, et al., Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15, 201 (2003)CrossRef T. Ikeda, M. Nakano, Y.L. Yu, et al., Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15, 201 (2003)CrossRef
19.
go back to reference Y.-L. Zhao, J.F. Stoddart, Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009)CrossRef Y.-L. Zhao, J.F. Stoddart, Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009)CrossRef
20.
go back to reference K. Han, W. Su, M. Zhong, et al., Reversible photocontrolled swelling-shrinking behavior of micron vesicles self-assembled from azopyridine-containing diblock copolymer. Macromol. Rapid Commun. 29, 1866–1870 (2008)CrossRef K. Han, W. Su, M. Zhong, et al., Reversible photocontrolled swelling-shrinking behavior of micron vesicles self-assembled from azopyridine-containing diblock copolymer. Macromol. Rapid Commun. 29, 1866–1870 (2008)CrossRef
21.
go back to reference S. Xie, A. Natansohn, P. Rochon, Recent developments in aromatic azo polymers research. Chem. Mater. 5, 403–411 (1993)CrossRef S. Xie, A. Natansohn, P. Rochon, Recent developments in aromatic azo polymers research. Chem. Mater. 5, 403–411 (1993)CrossRef
22.
go back to reference T.M. Geue, A.G. Saphiannikova, O. Henneberg, et al., Formation mechanism and dynamics in polymer surface gratings. Phys. Rev. E 65 (2002) T.M. Geue, A.G. Saphiannikova, O. Henneberg, et al., Formation mechanism and dynamics in polymer surface gratings. Phys. Rev. E 65 (2002)
23.
go back to reference T. Ubukata, T. Seki, K. Ichimura, Surface relief gratings in host-guest supramolecular materials. Adv. Mater. 12, 1675 (2000)CrossRef T. Ubukata, T. Seki, K. Ichimura, Surface relief gratings in host-guest supramolecular materials. Adv. Mater. 12, 1675 (2000)CrossRef
24.
go back to reference V. Shibaev, A. Bobrovsky, N. Boiko, Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog. Polym. Sci. 28, 729–836 (2003)CrossRef V. Shibaev, A. Bobrovsky, N. Boiko, Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog. Polym. Sci. 28, 729–836 (2003)CrossRef
25.
go back to reference S. Kurihara, T. Ikeda, S. Tazuke, et al., Isothermal phase-transition of liquid-crystals induced by photoisomerization of doped spiropyrans. J. Chem. Soc.-Faraday Trans. 87, 3251–3254 (1991)CrossRef S. Kurihara, T. Ikeda, S. Tazuke, et al., Isothermal phase-transition of liquid-crystals induced by photoisomerization of doped spiropyrans. J. Chem. Soc.-Faraday Trans. 87, 3251–3254 (1991)CrossRef
26.
go back to reference A.S. Angeloni, D. Caretti, C. Carlini, et al., Photochromic liquid-crystalline polymers main chain and side-chain polymers containing azobenzene mesogens. Liq. Cryst. 4, 513–527 (1989)CrossRef A.S. Angeloni, D. Caretti, C. Carlini, et al., Photochromic liquid-crystalline polymers main chain and side-chain polymers containing azobenzene mesogens. Liq. Cryst. 4, 513–527 (1989)CrossRef
27.
go back to reference Z. Yue, I. Tomiki, Smart light-responsive materials: azobenzene-containing polymers and liquid crystals (John Wiley & Sons, Inc., Hoboken, NJ, 2009) Z. Yue, I. Tomiki, Smart light-responsive materials: azobenzene-containing polymers and liquid crystals (John Wiley & Sons, Inc., Hoboken, NJ, 2009)
28.
go back to reference T. Seki, M. Sakuragi, Y. Kawanishi, et al., Modulated photoregulation of liquid-crystal alignment by azobenzene Langmuir-Blodgett layers—reversible alignment changes of liquid-crystals induced by photochromic molecular films 0.11. Thin Solid Films 210, 836–838 (1992)CrossRef T. Seki, M. Sakuragi, Y. Kawanishi, et al., Modulated photoregulation of liquid-crystal alignment by azobenzene Langmuir-Blodgett layers—reversible alignment changes of liquid-crystals induced by photochromic molecular films 0.11. Thin Solid Films 210, 836–838 (1992)CrossRef
29.
go back to reference A. Natansohn, P. Rochon, J. Gosselin, et al., Azo polymers for reversible optical storage 0.1. poly 4′- 2-(acryloyloxy)ethyl ethylamino-4-nitroazobenzene. Macromolecules 25, 2268–2273 (1992)CrossRef A. Natansohn, P. Rochon, J. Gosselin, et al., Azo polymers for reversible optical storage 0.1. poly 4′- 2-(acryloyloxy)ethyl ethylamino-4-nitroazobenzene. Macromolecules 25, 2268–2273 (1992)CrossRef
30.
go back to reference S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)CrossRef S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)CrossRef
31.
go back to reference F.M. Andreopoulos, I. Persaud, Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27, 2468–2476 (2006)CrossRef F.M. Andreopoulos, I. Persaud, Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27, 2468–2476 (2006)CrossRef
32.
go back to reference J. Edahiro, K. Sumaru, Y. Tada, et al., In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6, 970–974 (2005)CrossRef J. Edahiro, K. Sumaru, Y. Tada, et al., In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6, 970–974 (2005)CrossRef
33.
go back to reference A. Higuchi, A. Hamamura, Y. Shindo, et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules 5, 1770–1774 (2004)CrossRef A. Higuchi, A. Hamamura, Y. Shindo, et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules 5, 1770–1774 (2004)CrossRef
34.
go back to reference C. Zhu, C. Ninh, C.J. Bettinger, Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014)CrossRef C. Zhu, C. Ninh, C.J. Bettinger, Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014)CrossRef
35.
go back to reference I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRef I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRef
36.
go back to reference H. Priya James, R. John, A. Alex, et al., Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sin. B 4, 120–127 (2014)CrossRef H. Priya James, R. John, A. Alex, et al., Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sin. B 4, 120–127 (2014)CrossRef
37.
go back to reference R. Cheng, F. Meng, C. Deng, et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013)CrossRef R. Cheng, F. Meng, C. Deng, et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013)CrossRef
38.
go back to reference A.K. Bajpai, S.K. Shukla, S. Bhanu, et al., Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008)CrossRef A.K. Bajpai, S.K. Shukla, S. Bhanu, et al., Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008)CrossRef
39.
go back to reference M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRef M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRef
40.
go back to reference L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013)CrossRef L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013)CrossRef
41.
go back to reference M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56, 145–157 (2007)CrossRef M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56, 145–157 (2007)CrossRef
42.
go back to reference E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64, 866–884 (2012)CrossRef E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64, 866–884 (2012)CrossRef
43.
go back to reference H. Nishioka, X. Liang, T. Kato, et al., A photon-fueled DNA nanodevice that contains two different photoswitches. Angew. Chem. Int. Ed. 51, 1165–1168 (2012)CrossRef H. Nishioka, X. Liang, T. Kato, et al., A photon-fueled DNA nanodevice that contains two different photoswitches. Angew. Chem. Int. Ed. 51, 1165–1168 (2012)CrossRef
44.
go back to reference C. Zhu, C.J. Bettinger, Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J. Mater. Chem. B 2, 1613–1618 (2014)CrossRef C. Zhu, C.J. Bettinger, Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J. Mater. Chem. B 2, 1613–1618 (2014)CrossRef
45.
go back to reference A. Serafim, C. Tucureanu, D.G. Petre, et al., One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New J. Chem. 38, 3112–3126 (2014)CrossRef A. Serafim, C. Tucureanu, D.G. Petre, et al., One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New J. Chem. 38, 3112–3126 (2014)CrossRef
46.
go back to reference D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012)CrossRef D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012)CrossRef
47.
go back to reference G. Liu, W. Liu, C.-M. Dong, UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym. Chem. 4, 3431–3443 (2013)CrossRef G. Liu, W. Liu, C.-M. Dong, UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym. Chem. 4, 3431–3443 (2013)CrossRef
48.
go back to reference D. Han, X. Tong, Y. Zhao, Fast photodegradable block copolymer micelles for burst release. Macromolecules 44, 437–439 (2011)CrossRef D. Han, X. Tong, Y. Zhao, Fast photodegradable block copolymer micelles for burst release. Macromolecules 44, 437–439 (2011)CrossRef
49.
go back to reference Q. Jin, G. Liu, J. Ji, Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J. Polym. Sci. Part A: Polym. Chem. 48, 2855–2861 (2010)CrossRef Q. Jin, G. Liu, J. Ji, Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J. Polym. Sci. Part A: Polym. Chem. 48, 2855–2861 (2010)CrossRef
50.
go back to reference J. Jiang, Q. Shu, X. Chen, et al., Photoinduced morphology switching of polymer nanoaggregates in aqueous solution. Langmuir 26, 14247–14254 (2010)CrossRef J. Jiang, Q. Shu, X. Chen, et al., Photoinduced morphology switching of polymer nanoaggregates in aqueous solution. Langmuir 26, 14247–14254 (2010)CrossRef
51.
go back to reference E. Cabane, V. Malinova, W. Meier, Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers. Macromol. Chem. Phys. 211, 1847–1856 (2010)CrossRef E. Cabane, V. Malinova, W. Meier, Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers. Macromol. Chem. Phys. 211, 1847–1856 (2010)CrossRef
52.
go back to reference Y. Zhao, Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 19, 4887–4895 (2009)CrossRef Y. Zhao, Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 19, 4887–4895 (2009)CrossRef
53.
go back to reference M.W. Urban, Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009)CrossRef M.W. Urban, Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009)CrossRef
54.
go back to reference Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc. 78, 2304–2312 (1956)CrossRef Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc. 78, 2304–2312 (1956)CrossRef
55.
go back to reference E. Kim, Photorefractive effects in organic photochromic materials, in Photorefractive materials and their applications 2, ed. by W. T. Rhodes, (Springer Science+Business Media, LLC, New York, 2007), p. 607 E. Kim, Photorefractive effects in organic photochromic materials, in Photorefractive materials and their applications 2, ed. by W. T. Rhodes, (Springer Science+Business Media, LLC, New York, 2007), p. 607
56.
go back to reference F.A. Jerca, V.V. Jerca, D.F. Anghel, et al., Novel aspects regarding the photochemistry of azo-derivatives substituted with strong acceptor groups. J. Phys. Chem. C 119, 10538–10549 (2015)CrossRef F.A. Jerca, V.V. Jerca, D.F. Anghel, et al., Novel aspects regarding the photochemistry of azo-derivatives substituted with strong acceptor groups. J. Phys. Chem. C 119, 10538–10549 (2015)CrossRef
57.
go back to reference Z. Mahimwalla, K.G. Yager, J.-I. Mamiya, et al., Azobenzene photomechanics: prospects and potential applications. Polym. Bull. 69, 967–1006 (2012)CrossRef Z. Mahimwalla, K.G. Yager, J.-I. Mamiya, et al., Azobenzene photomechanics: prospects and potential applications. Polym. Bull. 69, 967–1006 (2012)CrossRef
58.
go back to reference A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011)CrossRef A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011)CrossRef
59.
go back to reference A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. Int. Ed. 50, 1325–1327 (2011)CrossRef A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. Int. Ed. 50, 1325–1327 (2011)CrossRef
60.
go back to reference A.A. Beharry, O. Sadovski, G.A. Woolley, Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011)CrossRef A.A. Beharry, O. Sadovski, G.A. Woolley, Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011)CrossRef
61.
go back to reference L. Florea, D. Diamond, F. Benito-Lopez, Photo-responsive polymeric structures based on spiropyran. Macromol. Mater. Eng. 297, 1148–1159 (2012)CrossRef L. Florea, D. Diamond, F. Benito-Lopez, Photo-responsive polymeric structures based on spiropyran. Macromol. Mater. Eng. 297, 1148–1159 (2012)CrossRef
62.
go back to reference G. Such, R.A. Evans, L.H. Yee, et al., Factors influencing photochromism of spiro-compounds within polymeric matrices. J. Macromol. Sci.: Polym. Rev. C43, 547–579 (2003)CrossRef G. Such, R.A. Evans, L.H. Yee, et al., Factors influencing photochromism of spiro-compounds within polymeric matrices. J. Macromol. Sci.: Polym. Rev. C43, 547–579 (2003)CrossRef
63.
go back to reference M.K. Maurer, I.K. Lednev, S.A. Asher, Photoswitchable spirobenzopyran-based photochemically controlled photonic crystals. Adv. Funct. Mater. 15, 1401–1406 (2005)CrossRef M.K. Maurer, I.K. Lednev, S.A. Asher, Photoswitchable spirobenzopyran-based photochemically controlled photonic crystals. Adv. Funct. Mater. 15, 1401–1406 (2005)CrossRef
64.
go back to reference G.K. Such, R.A. Evans, T.P. Davis, Rapid photochromic switching in a rigid polymer matrix using living radical polymerization. Macromolecules 39, 1391–1396 (2006)CrossRef G.K. Such, R.A. Evans, T.P. Davis, Rapid photochromic switching in a rigid polymer matrix using living radical polymerization. Macromolecules 39, 1391–1396 (2006)CrossRef
65.
go back to reference G.K. Such, R.A. Evans, T.P. Davis, The use of block copolymers to systematically modify photochromic behavior. Macromolecules 39, 9562–9570 (2006)CrossRef G.K. Such, R.A. Evans, T.P. Davis, The use of block copolymers to systematically modify photochromic behavior. Macromolecules 39, 9562–9570 (2006)CrossRef
66.
go back to reference G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1753 (2000)CrossRef G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1753 (2000)CrossRef
67.
go back to reference S.Z. Janicki, G.B. Schuster, A liquid-crystal optooptical switch—nondestructive information-retrieval based on a photochromic fulgide as trigger. J. Am. Chem. Soc. 117, 8524–8527 (1995)CrossRef S.Z. Janicki, G.B. Schuster, A liquid-crystal optooptical switch—nondestructive information-retrieval based on a photochromic fulgide as trigger. J. Am. Chem. Soc. 117, 8524–8527 (1995)CrossRef
68.
go back to reference W. Ji, N. Li, D. Chen, et al., Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B 1, 5942–5949 (2013)CrossRef W. Ji, N. Li, D. Chen, et al., Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B 1, 5942–5949 (2013)CrossRef
69.
go back to reference N. Fomina, C.L. Mcfearin, M. Sermsakdi, et al., Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44, 8590–8597 (2011)CrossRef N. Fomina, C.L. Mcfearin, M. Sermsakdi, et al., Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44, 8590–8597 (2011)CrossRef
70.
go back to reference Q. Jin, X. Liu, G. Liu, et al., Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer 51, 1311–1319 (2010)CrossRef Q. Jin, X. Liu, G. Liu, et al., Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer 51, 1311–1319 (2010)CrossRef
71.
go back to reference M. Nagata, Y. Yamamoto, Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels. React. Funct. Polym. 68, 915–921 (2008)CrossRef M. Nagata, Y. Yamamoto, Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels. React. Funct. Polym. 68, 915–921 (2008)CrossRef
72.
go back to reference S.R. Trenor, A.R. Shultz, B.J. Love, et al., Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004)CrossRef S.R. Trenor, A.R. Shultz, B.J. Love, et al., Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004)CrossRef
73.
go back to reference B.G. Lake, Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999)CrossRef B.G. Lake, Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999)CrossRef
74.
go back to reference C. Zhu, C.J. Bettinger, Light-induced disintegration of robust physically cross-linked polymer networks. Macromol. Rapid Commun. 34, 1446–1451 (2013)CrossRef C. Zhu, C.J. Bettinger, Light-induced disintegration of robust physically cross-linked polymer networks. Macromol. Rapid Commun. 34, 1446–1451 (2013)CrossRef
75.
go back to reference H. Zhao, E.S. Sterner, E.B. Coughlin, et al., o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45, 1723–1736 (2012)CrossRef H. Zhao, E.S. Sterner, E.B. Coughlin, et al., o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45, 1723–1736 (2012)CrossRef
76.
go back to reference Thomas SW, Iii (2012) New applications of photolabile nitrobenzyl groups in polymers. Macromol. Chem. Phys. 213:2443–2449 Thomas SW, Iii (2012) New applications of photolabile nitrobenzyl groups in polymers. Macromol. Chem. Phys. 213:2443–2449
77.
go back to reference Gumbley P, Koylu D, Thomas SW, Iii (2011) Photoresponsive polymers containing nitrobenzyl esters via ring-opening metathesis polymerization. Macromolecules 44:7956–7961 Gumbley P, Koylu D, Thomas SW, Iii (2011) Photoresponsive polymers containing nitrobenzyl esters via ring-opening metathesis polymerization. Macromolecules 44:7956–7961
78.
go back to reference O. Bertrand, J.-M. Schumers, C. Kuppan, et al., Photo-induced micellization of block copolymers bearing 4,5-dimethoxy-2-nitrobenzyl side groups. Soft Matter 7, 6891–6896 (2011)CrossRef O. Bertrand, J.-M. Schumers, C. Kuppan, et al., Photo-induced micellization of block copolymers bearing 4,5-dimethoxy-2-nitrobenzyl side groups. Soft Matter 7, 6891–6896 (2011)CrossRef
79.
go back to reference I. Aujard, C. Benbrahim, M. Gouget, et al., o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chem. A Eur. J. 12, 6865–6879 (2006)CrossRef I. Aujard, C. Benbrahim, M. Gouget, et al., o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chem. A Eur. J. 12, 6865–6879 (2006)CrossRef
80.
go back to reference S. Wang, M.-S. Choi, S.-H. Kim, Bistable photoswitching in poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel for optical data storage. J. Photochem. Photobiol. A: Chem. 198, 150–155 (2008)CrossRef S. Wang, M.-S. Choi, S.-H. Kim, Bistable photoswitching in poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel for optical data storage. J. Photochem. Photobiol. A: Chem. 198, 150–155 (2008)CrossRef
81.
go back to reference L. Zhu, W. Wu, M.-Q. Zhu, et al., Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 129, 3524 (2007)CrossRef L. Zhu, W. Wu, M.-Q. Zhu, et al., Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 129, 3524 (2007)CrossRef
82.
go back to reference Y. Yokoyama, Fulgides for memories and switches. Chem. Rev. 100, 1717–1740 (2000)CrossRef Y. Yokoyama, Fulgides for memories and switches. Chem. Rev. 100, 1717–1740 (2000)CrossRef
83.
go back to reference M. Irie, T. Fukaminato, K. Matsuda, et al., Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014)CrossRef M. Irie, T. Fukaminato, K. Matsuda, et al., Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014)CrossRef
84.
go back to reference F.M. Andreopoulos, C.R. Deible, M.T. Stauffer, et al., Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 118, 6235–6240 (1996)CrossRef F.M. Andreopoulos, C.R. Deible, M.T. Stauffer, et al., Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 118, 6235–6240 (1996)CrossRef
85.
go back to reference Y.J. Zheng, F.M. Andreopoulos, M. Micic, et al., A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001)CrossRef Y.J. Zheng, F.M. Andreopoulos, M. Micic, et al., A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001)CrossRef
86.
go back to reference Y.J. Zheng, M. Mieie, S.V. Mello, et al., PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002)CrossRef Y.J. Zheng, M. Mieie, S.V. Mello, et al., PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002)CrossRef
87.
go back to reference Q. Jin, G. Liu, J. Li, Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur. Polym. J. 46, 2120–2128 (2010)CrossRef Q. Jin, G. Liu, J. Li, Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur. Polym. J. 46, 2120–2128 (2010)CrossRef
88.
go back to reference D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008)CrossRef D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008)CrossRef
89.
go back to reference S. Banerjee, R. Tripathy, D. Cozzens, et al., Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl. Mater. Interfaces 7, 2064–2072 (2015)CrossRef S. Banerjee, R. Tripathy, D. Cozzens, et al., Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl. Mater. Interfaces 7, 2064–2072 (2015)CrossRef
90.
go back to reference Snyder EA, Tong TH (2005) Towards novel light-activated shape memory polymer: thermornechanical properties of photo-responsive polymers. In: Ozkan CS, LaVan DA, McNie M, Prasad S editors. Micro- and nanosystems-materials and devices. p 353–358 Snyder EA, Tong TH (2005) Towards novel light-activated shape memory polymer: thermornechanical properties of photo-responsive polymers. In: Ozkan CS, LaVan DA, McNie M, Prasad S editors. Micro- and nanosystems-materials and devices. p 353–358
91.
go back to reference S. Gug, S. Charon, A. Specht, et al., Photolabile glutamate protecting group with high one- and two-photon uncaging efficiencies. ChemBiochem 9, 1303–1307 (2008)CrossRef S. Gug, S. Charon, A. Specht, et al., Photolabile glutamate protecting group with high one- and two-photon uncaging efficiencies. ChemBiochem 9, 1303–1307 (2008)CrossRef
92.
go back to reference H. Yu, J. Li, D. Wu, et al., Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39, 464–473 (2010)CrossRef H. Yu, J. Li, D. Wu, et al., Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39, 464–473 (2010)CrossRef
93.
go back to reference H. Xu, M.M. Reynolds, K.E. Cook, et al., 2-Hydroxy-5-nitrobenzyl as a Diazeniumdiolate Protecting Group: application in NO-releasing polymers with enhanced biocompatibility. Org. Lett. 10, 4593–4596 (2008)CrossRef H. Xu, M.M. Reynolds, K.E. Cook, et al., 2-Hydroxy-5-nitrobenzyl as a Diazeniumdiolate Protecting Group: application in NO-releasing polymers with enhanced biocompatibility. Org. Lett. 10, 4593–4596 (2008)CrossRef
94.
go back to reference P. Anilkumar, E. Gravel, I. Theodorou, et al., Nanometric micelles with photo-triggered cytotoxicity. Adv. Funct. Mater. 24, 5246–5252 (2014)CrossRef P. Anilkumar, E. Gravel, I. Theodorou, et al., Nanometric micelles with photo-triggered cytotoxicity. Adv. Funct. Mater. 24, 5246–5252 (2014)CrossRef
95.
go back to reference D.Y. Wong, D.R. Griffin, J. Reed, et al., Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43, 2824–2831 (2010)CrossRef D.Y. Wong, D.R. Griffin, J. Reed, et al., Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43, 2824–2831 (2010)CrossRef
96.
go back to reference J.-M. Schumers, O. Bertrand, C.-A. Fustin, et al., Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups. J. Polym. Sci. Part A: Polym. Chem. 50, 599–608 (2012)CrossRef J.-M. Schumers, O. Bertrand, C.-A. Fustin, et al., Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups. J. Polym. Sci. Part A: Polym. Chem. 50, 599–608 (2012)CrossRef
97.
go back to reference D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012)CrossRef D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012)CrossRef
98.
go back to reference C.D.G. Lux, C.L. Mcfearin, S. Joshi-Barr, et al., Single UV or near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett. 1, 922–926 (2012)CrossRef C.D.G. Lux, C.L. Mcfearin, S. Joshi-Barr, et al., Single UV or near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett. 1, 922–926 (2012)CrossRef
99.
go back to reference B. Yan, J.-C. Boyer, N.R. Branda, et al., Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 133, 19714–19717 (2011)CrossRef B. Yan, J.-C. Boyer, N.R. Branda, et al., Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 133, 19714–19717 (2011)CrossRef
100.
go back to reference Y.R. Zhao, Q. Zheng, K. Dakin, et al., New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663 (2004)CrossRef Y.R. Zhao, Q. Zheng, K. Dakin, et al., New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663 (2004)CrossRef
101.
go back to reference A.Z. Suzuki, T. Watanabe, M. Kawamoto, et al., Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett. 5, 4867–4870 (2003)CrossRef A.Z. Suzuki, T. Watanabe, M. Kawamoto, et al., Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett. 5, 4867–4870 (2003)CrossRef
102.
go back to reference V.R. Shembekar, Y.L. Chen, B.K. Carpenter, et al., A protecting group for carboxylic acids that can be photolyzed by visible light. Biochemistry 44, 7107–7114 (2005)CrossRef V.R. Shembekar, Y.L. Chen, B.K. Carpenter, et al., A protecting group for carboxylic acids that can be photolyzed by visible light. Biochemistry 44, 7107–7114 (2005)CrossRef
103.
go back to reference R.S. Givens, M. Rubina, J. Wirz, Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem. Photobiol. Sci. 11, 472–488 (2012)CrossRef R.S. Givens, M. Rubina, J. Wirz, Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem. Photobiol. Sci. 11, 472–488 (2012)CrossRef
104.
go back to reference Y.V. Il’ichev, M.A. Schworer, J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP. J. Am. Chem. Soc. 126, 4581–4595 (2004)CrossRef Y.V. Il’ichev, M.A. Schworer, J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP. J. Am. Chem. Soc. 126, 4581–4595 (2004)CrossRef
105.
go back to reference Y. Jiang, P. Wan, H. Xu, et al., Facile reversible UV-controlled and fast transition from emulsion to gel by using a photoresponsive polymer with a Malachite Green Group. Langmuir 25, 10,134–10,138 (2009)CrossRef Y. Jiang, P. Wan, H. Xu, et al., Facile reversible UV-controlled and fast transition from emulsion to gel by using a photoresponsive polymer with a Malachite Green Group. Langmuir 25, 10,134–10,138 (2009)CrossRef
106.
go back to reference Z. Sekkat, Photoreactive organic thin films (Elsevier Science (USA), San Diego, California, 2002) Z. Sekkat, Photoreactive organic thin films (Elsevier Science (USA), San Diego, California, 2002)
107.
go back to reference S.K. Yesodha, C.K. Sadashiva Pillai, N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004)CrossRef S.K. Yesodha, C.K. Sadashiva Pillai, N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004)CrossRef
108.
go back to reference H. Rau, Photoisomerization of azobenzenes, in Photochemistry and photophysics, ed. by J. F. Rabek, (CRC Press, Inc., Boca Raton, FL, 1990) H. Rau, Photoisomerization of azobenzenes, in Photochemistry and photophysics, ed. by J. F. Rabek, (CRC Press, Inc., Boca Raton, FL, 1990)
109.
go back to reference A. Goulet-Hanssens, K.L.W. Sun, T.E. Kennedy, et al., Photoreversible surfaces to regulate cell adhesion. Biomacromolecules 13, 2958–2963 (2012)CrossRef A. Goulet-Hanssens, K.L.W. Sun, T.E. Kennedy, et al., Photoreversible surfaces to regulate cell adhesion. Biomacromolecules 13, 2958–2963 (2012)CrossRef
110.
go back to reference V.V. Jerca, F.A. Nicolescu, R. Trusca, et al., Oxazoline-functional polymer particles graft with azo-dye. React. Funct. Polym. 71, 373–379 (2011)CrossRef V.V. Jerca, F.A. Nicolescu, R. Trusca, et al., Oxazoline-functional polymer particles graft with azo-dye. React. Funct. Polym. 71, 373–379 (2011)CrossRef
111.
go back to reference L. Brzozowski, E.H. Sargent, Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci. Mater. Electron. 12, 483–489 (2001)CrossRef L. Brzozowski, E.H. Sargent, Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci. Mater. Electron. 12, 483–489 (2001)CrossRef
112.
go back to reference G.-A. Jaume, V. Dolores, Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 8, 1003–1017 (2012)CrossRef G.-A. Jaume, V. Dolores, Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 8, 1003–1017 (2012)CrossRef
113.
go back to reference V.V. Jerca, F.A. Jerca, I. Rau, et al., Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Opt. Mater. 48, 160–164 (2015)CrossRef V.V. Jerca, F.A. Jerca, I. Rau, et al., Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Opt. Mater. 48, 160–164 (2015)CrossRef
114.
go back to reference M.M. Lerch, M.J. Hansen, G.M. Van Dam, et al., Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016)CrossRef M.M. Lerch, M.J. Hansen, G.M. Van Dam, et al., Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016)CrossRef
115.
go back to reference J. Bieth, S.M. Vratsanos, N.H. Wassermann, et al., Photoregulation of biological activity by photochromic reagents. Inactivators of acetylcholinesterase. Biochemistry 12, 3023–3027 (1973)CrossRef J. Bieth, S.M. Vratsanos, N.H. Wassermann, et al., Photoregulation of biological activity by photochromic reagents. Inactivators of acetylcholinesterase. Biochemistry 12, 3023–3027 (1973)CrossRef
116.
go back to reference I. Tochitsky, A. Polosukhina, V.E. Degtyar, et al., Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014)CrossRef I. Tochitsky, A. Polosukhina, V.E. Degtyar, et al., Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014)CrossRef
117.
go back to reference M.A. Kienzler, A. Reiner, E. Trautman, et al., A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013)CrossRef M.A. Kienzler, A. Reiner, E. Trautman, et al., A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013)CrossRef
118.
go back to reference P. Stawski, M. Sumser, D. Trauner, A photochromic agonist of AMPA receptors. Angew. Chem. Int. Ed. 51, 5748–5751 (2012)CrossRef P. Stawski, M. Sumser, D. Trauner, A photochromic agonist of AMPA receptors. Angew. Chem. Int. Ed. 51, 5748–5751 (2012)CrossRef
119.
go back to reference R.H. Kramer, D.L. Fortin, D. Trauner, New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552 (2009)CrossRef R.H. Kramer, D.L. Fortin, D. Trauner, New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552 (2009)CrossRef
120.
go back to reference J.H. Harvey, D. Trauner, Regulating enzymatic activity with a photoswitchable affinity label. ChemBiochem 9, 191–193 (2008)CrossRef J.H. Harvey, D. Trauner, Regulating enzymatic activity with a photoswitchable affinity label. ChemBiochem 9, 191–193 (2008)CrossRef
121.
go back to reference D.L. Fortin, M.R. Banghart, T.W. Dunn, et al., Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008)CrossRef D.L. Fortin, M.R. Banghart, T.W. Dunn, et al., Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008)CrossRef
122.
go back to reference J. Broichhagen, N.R. Johnston, Y. Von Ohlen, et al., Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016)CrossRef J. Broichhagen, N.R. Johnston, Y. Von Ohlen, et al., Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016)CrossRef
123.
go back to reference J. Broichhagen, J.A. Frank, N.R. Johnston, et al., A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. 51, 6018–6021 (2015)CrossRef J. Broichhagen, J.A. Frank, N.R. Johnston, et al., A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. 51, 6018–6021 (2015)CrossRef
124.
go back to reference M.J. Hansen, W.A. Velema, G. De Bruin, et al., Proteasome inhibitors with photocontrolled activity. ChemBioChem 15, 2053–2057 (2014)CrossRef M.J. Hansen, W.A. Velema, G. De Bruin, et al., Proteasome inhibitors with photocontrolled activity. ChemBioChem 15, 2053–2057 (2014)CrossRef
125.
go back to reference A.F. Kisselev, M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr. Opin. Chem. Biol. 23, 16–22 (2014)CrossRef A.F. Kisselev, M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr. Opin. Chem. Biol. 23, 16–22 (2014)CrossRef
126.
go back to reference M. Borowiak, W. Nahaboo, M. Reynders, et al., Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015)CrossRef M. Borowiak, W. Nahaboo, M. Reynders, et al., Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015)CrossRef
127.
go back to reference A.J. Engdahl, E.A. Torres, S.E. Lock, et al., Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett. 17, 4546–4549 (2015)CrossRef A.J. Engdahl, E.A. Torres, S.E. Lock, et al., Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett. 17, 4546–4549 (2015)CrossRef
128.
go back to reference J.E. Sheldon, M.M. Dcona, C.E. Lyons, et al., Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2016)CrossRef J.E. Sheldon, M.M. Dcona, C.E. Lyons, et al., Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2016)CrossRef
129.
go back to reference W.A. Velema, J.P. Van Der Berg, M.J. Hansen, et al., Optical control of antibacterial activity. Nat. Chem. 5, 924–928 (2013)CrossRef W.A. Velema, J.P. Van Der Berg, M.J. Hansen, et al., Optical control of antibacterial activity. Nat. Chem. 5, 924–928 (2013)CrossRef
130.
go back to reference S. Pittolo, X. Gómez-Santacana, K. Eckelt, et al., An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat. Chem. Biol. 10, 813–815 (2014)CrossRef S. Pittolo, X. Gómez-Santacana, K. Eckelt, et al., An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat. Chem. Biol. 10, 813–815 (2014)CrossRef
131.
go back to reference M. Stein, A. Breit, T. Fehrentz, et al., Optical control of TRPV1 channels. Angew. Chem. Int. Ed. 52, 9845–9848 (2013)CrossRef M. Stein, A. Breit, T. Fehrentz, et al., Optical control of TRPV1 channels. Angew. Chem. Int. Ed. 52, 9845–9848 (2013)CrossRef
132.
go back to reference H. Nishioka, X. Liang, H. Asanuma, Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. Chem. A Eur. J. 16, 2054–2062 (2010)CrossRef H. Nishioka, X. Liang, H. Asanuma, Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. Chem. A Eur. J. 16, 2054–2062 (2010)CrossRef
133.
go back to reference H. Ito, X. Liang, H. Nishioka, et al., Construction of photoresponsive RNA for photoswitching RNA hybridization. Org. Biomol. Chem. 8, 5519–5524 (2010)CrossRef H. Ito, X. Liang, H. Nishioka, et al., Construction of photoresponsive RNA for photoswitching RNA hybridization. Org. Biomol. Chem. 8, 5519–5524 (2010)CrossRef
134.
go back to reference H. Asanuma, X. Liang, H. Nishioka, et al., Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007)CrossRef H. Asanuma, X. Liang, H. Nishioka, et al., Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007)CrossRef
135.
go back to reference R.P. Sinha, D.P. Hader, UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1, 225–236 (2002)CrossRef R.P. Sinha, D.P. Hader, UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1, 225–236 (2002)CrossRef
136.
go back to reference H. Asanuma, T. Ito, T. Yoshida, et al., Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Ed. 38, 2393–2395 (1999)CrossRef H. Asanuma, T. Ito, T. Yoshida, et al., Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Ed. 38, 2393–2395 (1999)CrossRef
137.
go back to reference H. Kang, H. Liu, X. Zhang, et al., Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27, 399–408 (2011)CrossRef H. Kang, H. Liu, X. Zhang, et al., Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27, 399–408 (2011)CrossRef
138.
go back to reference D. Han, J. Huang, Z. Zhu, et al., Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem. Commun. 47, 4670–4672 (2011)CrossRef D. Han, J. Huang, Z. Zhu, et al., Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem. Commun. 47, 4670–4672 (2011)CrossRef
139.
go back to reference R.H. Bisby, C. Mead, C.C. Morgan, Wavelength-programmed solute release from photosensitive liposomes. Biochem. Biophys. Res. Commun. 276, 169–173 (2000)CrossRef R.H. Bisby, C. Mead, C.C. Morgan, Wavelength-programmed solute release from photosensitive liposomes. Biochem. Biophys. Res. Commun. 276, 169–173 (2000)CrossRef
140.
go back to reference M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)CrossRef M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)CrossRef
141.
go back to reference D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRef D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRef
142.
go back to reference A.M. Kloxin, A.M. Kasko, C.N. Salinas, et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)CrossRef A.M. Kloxin, A.M. Kasko, C.N. Salinas, et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)CrossRef
143.
go back to reference K. Peng, I. Tomatsu, A. Kros, Light controlled protein release from a supramolecular hydrogel. Chem. Commun. 46, 4094–4096 (2010)CrossRef K. Peng, I. Tomatsu, A. Kros, Light controlled protein release from a supramolecular hydrogel. Chem. Commun. 46, 4094–4096 (2010)CrossRef
144.
go back to reference D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)CrossRef D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)CrossRef
145.
go back to reference K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization. Mater. Today 8, 26–33 (2005)CrossRef K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization. Mater. Today 8, 26–33 (2005)CrossRef
146.
go back to reference H.S. Bisht, A.K. Chatterjee, Living free-radical polymerization—a review. J. Macromol. Sci. Part C 41, 139–173 (2001)CrossRef H.S. Bisht, A.K. Chatterjee, Living free-radical polymerization—a review. J. Macromol. Sci. Part C 41, 139–173 (2001)CrossRef
147.
go back to reference Y. Zhao, Rational design of light-controllable polymer micelles. Chem. Rec. 7, 286–294 (2007)CrossRef Y. Zhao, Rational design of light-controllable polymer micelles. Chem. Rec. 7, 286–294 (2007)CrossRef
148.
go back to reference O. Boissiere, D. Han, L. Tremblay, et al., Flower micelles of poly(N-isopropylacrylamide) with azobenzene moieties regularly inserted into the main chain. Soft Mater 7, 9410–9415 (2011)CrossRef O. Boissiere, D. Han, L. Tremblay, et al., Flower micelles of poly(N-isopropylacrylamide) with azobenzene moieties regularly inserted into the main chain. Soft Mater 7, 9410–9415 (2011)CrossRef
149.
go back to reference J.-H. Liu, Y.-H. Chiu, Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J. Polym. Sci. Part A: Polym. Chem. 48, 1142–1148 (2010)CrossRef J.-H. Liu, Y.-H. Chiu, Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J. Polym. Sci. Part A: Polym. Chem. 48, 1142–1148 (2010)CrossRef
150.
go back to reference Z. Feng, L. Lin, Z. Yan, et al., Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol. Rapid Commun. 31, 640–644 (2010)CrossRef Z. Feng, L. Lin, Z. Yan, et al., Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol. Rapid Commun. 31, 640–644 (2010)CrossRef
151.
go back to reference D. Wang, J. Liu, G. Ye, et al., Amphiphilic block copolymers bearing strong push-pull azo chromophores: synthesis, micelle formation and photoinduced shape deformation. Polymer 50, 418–427 (2009)CrossRef D. Wang, J. Liu, G. Ye, et al., Amphiphilic block copolymers bearing strong push-pull azo chromophores: synthesis, micelle formation and photoinduced shape deformation. Polymer 50, 418–427 (2009)CrossRef
152.
go back to reference X. Tang, L. Gao, X. Fan, et al., Self-assembly and photoresponsivity property of amphiphilic ABA triblock copolymers containing azobenzene moieties in dilute solution. Macromol. Chem. Phys. 210, 1556–1562 (2009)CrossRef X. Tang, L. Gao, X. Fan, et al., Self-assembly and photoresponsivity property of amphiphilic ABA triblock copolymers containing azobenzene moieties in dilute solution. Macromol. Chem. Phys. 210, 1556–1562 (2009)CrossRef
153.
go back to reference G. Wang, X. Tong, Y. Zhao, Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37, 8911–8917 (2004)CrossRef G. Wang, X. Tong, Y. Zhao, Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37, 8911–8917 (2004)CrossRef
154.
go back to reference S. Son, E. Shin, B.-S. Kim, Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15, 628–634 (2014)CrossRef S. Son, E. Shin, B.-S. Kim, Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15, 628–634 (2014)CrossRef
155.
go back to reference H.-Y. Lee, K.K. Diehn, K. Sun, et al., Reversible photorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc. 133, 8461–8463 (2011)CrossRef H.-Y. Lee, K.K. Diehn, K. Sun, et al., Reversible photorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc. 133, 8461–8463 (2011)CrossRef
156.
go back to reference H.-I. Lee, W. Wu, J.K. Oh, et al., Light-induced reversible formation of polymeric micelles. Angew. Chem. Int. Ed. 46, 2453–2457 (2007)CrossRef H.-I. Lee, W. Wu, J.K. Oh, et al., Light-induced reversible formation of polymeric micelles. Angew. Chem. Int. Ed. 46, 2453–2457 (2007)CrossRef
157.
go back to reference V.K. Kotharangannagari, A. Sanchez-Ferrer, J. Ruokolainen, et al., Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules 44, 4569–4573 (2011)CrossRef V.K. Kotharangannagari, A. Sanchez-Ferrer, J. Ruokolainen, et al., Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules 44, 4569–4573 (2011)CrossRef
158.
go back to reference S.-J. Lim, C.-J. Carling, C.C. Warford, et al., Multifunctional photo- and thermo-responsive copolymer nanoparticles. Dyes Pigments 89, 230–235 (2011)CrossRef S.-J. Lim, C.-J. Carling, C.C. Warford, et al., Multifunctional photo- and thermo-responsive copolymer nanoparticles. Dyes Pigments 89, 230–235 (2011)CrossRef
159.
go back to reference Z. Chen, Y. He, Y. Wang, et al., Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly. Macromol. Rapid Commun. 32, 977–982 (2011)CrossRef Z. Chen, Y. He, Y. Wang, et al., Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly. Macromol. Rapid Commun. 32, 977–982 (2011)CrossRef
160.
go back to reference G.-Y. Liu, C.-J. Chen, D.-D. Li, et al., Near-infrared light-sensitive micelles for enhanced intracellular drug delivery. J. Mater. Chem. 22, 16865–16871 (2012)CrossRef G.-Y. Liu, C.-J. Chen, D.-D. Li, et al., Near-infrared light-sensitive micelles for enhanced intracellular drug delivery. J. Mater. Chem. 22, 16865–16871 (2012)CrossRef
161.
go back to reference C.-J. Chen, G.-Y. Liu, Y.-T. Shi, et al., Biocompatible micelles based on comb-like PEG derivates: formation, characterization, and photo-responsiveness. Macromol. Rapid Commun. 32, 1077–1081 (2011)CrossRef C.-J. Chen, G.-Y. Liu, Y.-T. Shi, et al., Biocompatible micelles based on comb-like PEG derivates: formation, characterization, and photo-responsiveness. Macromol. Rapid Commun. 32, 1077–1081 (2011)CrossRef
162.
go back to reference K. Szczubialka, I. Moczek, S. Blaszkiewicz, et al., Photocrosslinkable smart terpolymers responding to pH, temperature, and ionic strength. J. Polym. Sci. Part A: Polym. Chem. 42, 3879–3886 (2004)CrossRef K. Szczubialka, I. Moczek, S. Blaszkiewicz, et al., Photocrosslinkable smart terpolymers responding to pH, temperature, and ionic strength. J. Polym. Sci. Part A: Polym. Chem. 42, 3879–3886 (2004)CrossRef
163.
go back to reference J.F. Ding, G.J. Liu, Polystyrene block poly(2-cinnamoylethyl methacrylate) nanospheres with cross-linked shells. Macromolecules 31, 6554–6558 (1998)CrossRef J.F. Ding, G.J. Liu, Polystyrene block poly(2-cinnamoylethyl methacrylate) nanospheres with cross-linked shells. Macromolecules 31, 6554–6558 (1998)CrossRef
164.
go back to reference A. Guo, G.J. Liu, J. Tao, Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules 29, 2487–2493 (1996)CrossRef A. Guo, G.J. Liu, J. Tao, Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules 29, 2487–2493 (1996)CrossRef
165.
go back to reference S.-I. Yusa, M. Sugahara, T. Endo, et al., Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. Langmuir 25, 5258–5265 (2009)CrossRef S.-I. Yusa, M. Sugahara, T. Endo, et al., Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. Langmuir 25, 5258–5265 (2009)CrossRef
166.
go back to reference J. He, X. Tong, Y. Zhao, Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules 42, 4845–4852 (2009)CrossRef J. He, X. Tong, Y. Zhao, Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules 42, 4845–4852 (2009)CrossRef
167.
go back to reference J. He, L. Tremblay, S. Lacelle, et al., Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7, 2380–2386 (2011)CrossRef J. He, L. Tremblay, S. Lacelle, et al., Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7, 2380–2386 (2011)CrossRef
168.
go back to reference J. He, B. Yan, L. Tremblay, et al., Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 27, 436–444 (2011)CrossRef J. He, B. Yan, L. Tremblay, et al., Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 27, 436–444 (2011)CrossRef
169.
go back to reference J. Jiang, B. Qi, M. Lepage, et al., Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules 40, 790–792 (2007)CrossRef J. Jiang, B. Qi, M. Lepage, et al., Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules 40, 790–792 (2007)CrossRef
170.
go back to reference G. Liu, C.-M. Dong, Photoresponsive poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-cysteine N-carboxyanhydride monomer: synthesis, self-assembly, and phototriggered drug release. Biomacromolecules 13, 1573–1583 (2012)CrossRef G. Liu, C.-M. Dong, Photoresponsive poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-cysteine N-carboxyanhydride monomer: synthesis, self-assembly, and phototriggered drug release. Biomacromolecules 13, 1573–1583 (2012)CrossRef
171.
go back to reference J.Q. Jiang, X. Tong, D. Morris, et al., Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39, 4633–4640 (2006)CrossRef J.Q. Jiang, X. Tong, D. Morris, et al., Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39, 4633–4640 (2006)CrossRef
172.
go back to reference J. Babin, M. Pelletier, M. Lepage, et al., A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem. Int. Ed. 48, 3329–3332 (2009)CrossRef J. Babin, M. Pelletier, M. Lepage, et al., A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem. Int. Ed. 48, 3329–3332 (2009)CrossRef
173.
go back to reference C. Gong, K.-L. Wong, M.H.W. Lam, Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater. 20, 1353–1358 (2008)CrossRef C. Gong, K.-L. Wong, M.H.W. Lam, Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater. 20, 1353–1358 (2008)CrossRef
174.
go back to reference C. Gomy, A.R. Schmitzer, Synthesis and photoresponsive properties of a molecularly imprinted polymer. Org. Lett. 9, 3865–3868 (2007)CrossRef C. Gomy, A.R. Schmitzer, Synthesis and photoresponsive properties of a molecularly imprinted polymer. Org. Lett. 9, 3865–3868 (2007)CrossRef
175.
go back to reference N. Minoura, K. Idei, A. Rachkov, et al., Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition. Macromolecules 37, 9571–9576 (2004)CrossRef N. Minoura, K. Idei, A. Rachkov, et al., Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition. Macromolecules 37, 9571–9576 (2004)CrossRef
176.
go back to reference C. Gong, M.H.-W. Lam, H. Yu, The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv. Funct. Mater. 16, 1759–1767 (2006)CrossRef C. Gong, M.H.-W. Lam, H. Yu, The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv. Funct. Mater. 16, 1759–1767 (2006)CrossRef
177.
go back to reference Q. Tang, C. Gong, M.H.-W. Lam, et al., Photoregulated uptake and release of drug by an organic-inorganic hybrid sol-gel material. J. Sol-Gel Sci. Technol. 59, 495–504 (2011)CrossRef Q. Tang, C. Gong, M.H.-W. Lam, et al., Photoregulated uptake and release of drug by an organic-inorganic hybrid sol-gel material. J. Sol-Gel Sci. Technol. 59, 495–504 (2011)CrossRef
178.
go back to reference K. Sumaru, K. Ohi, T. Takagi, et al., Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22, 4353–4356 (2006)CrossRef K. Sumaru, K. Ohi, T. Takagi, et al., Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22, 4353–4356 (2006)CrossRef
179.
go back to reference E.U. Kulawardana, T. Kuruwita-Mudiyanselage, D.C. Neckers, Dual Responsive poly(N-isopropylacrylamide) hydrogels having spironaphthoxazines as pendant groups. J. Polym. Sci. Part A: Polym. Chem. 47, 3318–3325 (2009)CrossRef E.U. Kulawardana, T. Kuruwita-Mudiyanselage, D.C. Neckers, Dual Responsive poly(N-isopropylacrylamide) hydrogels having spironaphthoxazines as pendant groups. J. Polym. Sci. Part A: Polym. Chem. 47, 3318–3325 (2009)CrossRef
180.
go back to reference E.S. Gil, S.M. Hudson, Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 29, 1173–1222 (2004)CrossRef E.S. Gil, S.M. Hudson, Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 29, 1173–1222 (2004)CrossRef
181.
go back to reference F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. Part A: Polym. Chem. 38, 1466–1476 (2000)CrossRef F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. Part A: Polym. Chem. 38, 1466–1476 (2000)CrossRef
182.
go back to reference F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)CrossRef F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)CrossRef
183.
go back to reference D. Chen, H. Liu, T. Kobayashi, et al., Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 20, 3610–3614 (2010)CrossRef D. Chen, H. Liu, T. Kobayashi, et al., Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 20, 3610–3614 (2010)CrossRef
184.
go back to reference J. Liu, J. Nie, Y. Zhao, et al., Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J. Photochem. Photobiol. A Chem. 211, 20–25 (2010)CrossRef J. Liu, J. Nie, Y. Zhao, et al., Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J. Photochem. Photobiol. A Chem. 211, 20–25 (2010)CrossRef
185.
go back to reference S. Patnaik, A.K. Sharma, B.S. Garg, et al., Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm. 342, 184–193 (2007)CrossRef S. Patnaik, A.K. Sharma, B.S. Garg, et al., Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm. 342, 184–193 (2007)CrossRef
186.
go back to reference B.V.K.J. Schmidt, M. Hetzer, H. Ritter, et al., Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog. Polym. Sci. 39, 235–249 (2014)CrossRef B.V.K.J. Schmidt, M. Hetzer, H. Ritter, et al., Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog. Polym. Sci. 39, 235–249 (2014)CrossRef
187.
go back to reference K. Peng, C. Cui, I. Tomatsu, et al., Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter 6, 3778–3783 (2010)CrossRef K. Peng, C. Cui, I. Tomatsu, et al., Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter 6, 3778–3783 (2010)CrossRef
188.
go back to reference W. Xiao, W.-H. Chen, J. Zhang, et al., Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J. Phys. Chem. B 115, 13796–13802 (2011)CrossRef W. Xiao, W.-H. Chen, J. Zhang, et al., Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J. Phys. Chem. B 115, 13796–13802 (2011)CrossRef
189.
go back to reference X. Hu, P.J. Zheng, X.Y. Zhao, et al., Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their at-CD complexes. Polymer 45, 6219–6225 (2004)CrossRef X. Hu, P.J. Zheng, X.Y. Zhao, et al., Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their at-CD complexes. Polymer 45, 6219–6225 (2004)CrossRef
190.
go back to reference T. Sakai, H. Murayama, S. Nagano, et al., Photoresponsive slide-ring gel. Adv. Mater. 19, 2023 (2007)CrossRef T. Sakai, H. Murayama, S. Nagano, et al., Photoresponsive slide-ring gel. Adv. Mater. 19, 2023 (2007)CrossRef
191.
go back to reference Y. Takashima, T. Nakayama, M. Miyauchi, et al., Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem. Lett. 33, 890–891 (2004)CrossRef Y. Takashima, T. Nakayama, M. Miyauchi, et al., Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem. Lett. 33, 890–891 (2004)CrossRef
192.
go back to reference S. Tamesue, Y. Takashima, H. Yamaguchi, et al., Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010)CrossRef S. Tamesue, Y. Takashima, H. Yamaguchi, et al., Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010)CrossRef
193.
go back to reference C.-J. Chen, G.-Y. Liu, X.-S. Liu, et al., Construction of photo-responsive micelles from azobenzene-modified hyperbranched polyphosphates and study of their reversible self-assembly and disassembly behaviours. New J. Chem. 36, 694–701 (2012)CrossRef C.-J. Chen, G.-Y. Liu, X.-S. Liu, et al., Construction of photo-responsive micelles from azobenzene-modified hyperbranched polyphosphates and study of their reversible self-assembly and disassembly behaviours. New J. Chem. 36, 694–701 (2012)CrossRef
194.
go back to reference Q. Yan, Y. Xin, R. Zhou, et al., Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem. Commun. 47, 9594–9596 (2011)CrossRef Q. Yan, Y. Xin, R. Zhou, et al., Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem. Commun. 47, 9594–9596 (2011)CrossRef
195.
go back to reference M.A. Hahn, A.K. Singh, P. Sharma, et al., Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399, 3–27 (2011)CrossRef M.A. Hahn, A.K. Singh, P. Sharma, et al., Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399, 3–27 (2011)CrossRef
196.
go back to reference M.J. Chen, M.Z. Yin, Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 39, 365–395 (2014)CrossRef M.J. Chen, M.Z. Yin, Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 39, 365–395 (2014)CrossRef
197.
go back to reference W. Liu, W.S. Zhang, X.Q. Yu, et al., Synthesis and biomedical applications of fluorescent nanogels. Polym. Chem. 7, 5749–5762 (2016)CrossRef W. Liu, W.S. Zhang, X.Q. Yu, et al., Synthesis and biomedical applications of fluorescent nanogels. Polym. Chem. 7, 5749–5762 (2016)CrossRef
198.
go back to reference A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. 50, 1325–1327 (2011)CrossRef A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. 50, 1325–1327 (2011)CrossRef
199.
go back to reference A. Chevalier, W. Piao, K. Hanaoka, et al., Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging. Methods Appl. Fluoresc. 3 (2015) A. Chevalier, W. Piao, K. Hanaoka, et al., Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging. Methods Appl. Fluoresc. 3 (2015)
200.
go back to reference S. Mao, R.K.P. Benninger, Y. Yan, et al., Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94, 4515–4524 (2008)CrossRef S. Mao, R.K.P. Benninger, Y. Yan, et al., Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94, 4515–4524 (2008)CrossRef
201.
go back to reference S. Wan, Y. Zheng, J. Shen, et al., “On–off–on” switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications. ACS Appl. Mater. Interfaces 6, 19515–19519 (2014)CrossRef S. Wan, Y. Zheng, J. Shen, et al., “On–off–on” switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications. ACS Appl. Mater. Interfaces 6, 19515–19519 (2014)CrossRef
202.
go back to reference Q. Hu, Y.Q. Tan, M. Liu, et al., A new highly selective and sensitive fluorescent probe for Zn2+ and its application in cell-imaging. Dyes Pigments 107, 45–50 (2014)CrossRef Q. Hu, Y.Q. Tan, M. Liu, et al., A new highly selective and sensitive fluorescent probe for Zn2+ and its application in cell-imaging. Dyes Pigments 107, 45–50 (2014)CrossRef
203.
go back to reference B. Sen, S.K. Sheet, R. Thounaojam, et al., A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim. Acta A 173, 537–543 (2017)CrossRef B. Sen, S.K. Sheet, R. Thounaojam, et al., A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim. Acta A 173, 537–543 (2017)CrossRef
204.
go back to reference L. Huang, J. Cheng, K. Xie, et al., Cu2 + −selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans. 40, 10815–10817 (2011)CrossRef L. Huang, J. Cheng, K. Xie, et al., Cu2 + −selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans. 40, 10815–10817 (2011)CrossRef
205.
go back to reference O. Garcia-Beltran, B.K. Cassels, C. Perez, et al., Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors (Basel) 14, 1358–1371 (2014)CrossRef O. Garcia-Beltran, B.K. Cassels, C. Perez, et al., Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors (Basel) 14, 1358–1371 (2014)CrossRef
206.
go back to reference Q. Sun, W.B. Zhang, J.H. Qian, A ratiometric fluorescence probe for selective detection of sulfite and its application in realistic samples. Talanta 162, 107–113 (2017)CrossRef Q. Sun, W.B. Zhang, J.H. Qian, A ratiometric fluorescence probe for selective detection of sulfite and its application in realistic samples. Talanta 162, 107–113 (2017)CrossRef
207.
go back to reference Y.T. Yang, B.Z. Bai, M. Jin, et al., Fluorescent imaging of Au3+ in living cells with two new high selective Au3+ probes. Biosens. Bioelectron. 86, 939–943 (2016)CrossRef Y.T. Yang, B.Z. Bai, M. Jin, et al., Fluorescent imaging of Au3+ in living cells with two new high selective Au3+ probes. Biosens. Bioelectron. 86, 939–943 (2016)CrossRef
208.
go back to reference K.M. Xiong, F.J. Huo, C.X. Yin, et al., A off-on green fluorescent chemosensor for cyanide based on a hybrid coumarin-hemicyanine dye and its bioimaging. Sensors Actuat. B: Chem. 220, 822–828 (2015)CrossRef K.M. Xiong, F.J. Huo, C.X. Yin, et al., A off-on green fluorescent chemosensor for cyanide based on a hybrid coumarin-hemicyanine dye and its bioimaging. Sensors Actuat. B: Chem. 220, 822–828 (2015)CrossRef
209.
go back to reference Y. Zhou, Y.W. Yao, J.Y. Li, et al., Nitroxyl induced fluorescence enhancement via reduction of a copper(II) coumarin-ester complex: its application for bioimaging in vivo. Sensors Actuat. B: Chem. 174, 414–420 (2012)CrossRef Y. Zhou, Y.W. Yao, J.Y. Li, et al., Nitroxyl induced fluorescence enhancement via reduction of a copper(II) coumarin-ester complex: its application for bioimaging in vivo. Sensors Actuat. B: Chem. 174, 414–420 (2012)CrossRef
210.
go back to reference Y.C. Liao, P. Venkatesan, L.F. Wei, et al., A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sensors Actuat. B: Chem. 232, 732–737 (2016)CrossRef Y.C. Liao, P. Venkatesan, L.F. Wei, et al., A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sensors Actuat. B: Chem. 232, 732–737 (2016)CrossRef
211.
go back to reference Y.T. Yang, F.J. Huo, C.X. Yin, et al., Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications. Biosens. Bioelectron. 47, 300–306 (2013)CrossRef Y.T. Yang, F.J. Huo, C.X. Yin, et al., Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications. Biosens. Bioelectron. 47, 300–306 (2013)CrossRef
212.
go back to reference C.Y. Chen, W. Liu, C. Xu, et al., A colorimetric and fluorescent probe for detecting intracellular GSH. Biosens. Bioelectron. 71, 68–74 (2015)CrossRef C.Y. Chen, W. Liu, C. Xu, et al., A colorimetric and fluorescent probe for detecting intracellular GSH. Biosens. Bioelectron. 71, 68–74 (2015)CrossRef
213.
go back to reference W.M. Liu, B.J. Zhou, G.L. Niu, et al., Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl. Mater. Interfaces 7, 7421–7427 (2015)CrossRef W.M. Liu, B.J. Zhou, G.L. Niu, et al., Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl. Mater. Interfaces 7, 7421–7427 (2015)CrossRef
214.
go back to reference T.J. Chozinski, L.A. Gagnon, J.C. Vaughan, Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging. FEBS Lett. 588, 3603–3612 (2014)CrossRef T.J. Chozinski, L.A. Gagnon, J.C. Vaughan, Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging. FEBS Lett. 588, 3603–3612 (2014)CrossRef
215.
go back to reference H. Schill, S. Nizamov, F. Bottanelli, et al., 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chem. A Eur. J. 19, 16556–16565 (2013)CrossRef H. Schill, S. Nizamov, F. Bottanelli, et al., 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chem. A Eur. J. 19, 16556–16565 (2013)CrossRef
216.
go back to reference H. Zhang, C. Wang, T. Jiang, et al., Microtubule-targetable fluorescent probe: site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Anal. Chem. 87, 5216–5222 (2015)CrossRef H. Zhang, C. Wang, T. Jiang, et al., Microtubule-targetable fluorescent probe: site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Anal. Chem. 87, 5216–5222 (2015)CrossRef
217.
go back to reference E. Deniz, M. Tomasulo, J. Cusido, et al., Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J. Phys. Chem. C 116, 6058–6068 (2012)CrossRef E. Deniz, M. Tomasulo, J. Cusido, et al., Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J. Phys. Chem. C 116, 6058–6068 (2012)CrossRef
218.
go back to reference J. Qiao, L. Qi, Y. Shen, et al., Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J. Mater. Chem. 22, 11543–11549 (2012)CrossRef J. Qiao, L. Qi, Y. Shen, et al., Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J. Mater. Chem. 22, 11543–11549 (2012)CrossRef
219.
go back to reference Y. Wang, C.-Y. Hong, C.-Y. Pan, Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication. Biomacromolecules 13, 2585–2593 (2012)CrossRef Y. Wang, C.-Y. Hong, C.-Y. Pan, Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication. Biomacromolecules 13, 2585–2593 (2012)CrossRef
220.
go back to reference V.V. Jerca, F.A. Nicolescu, D.S. Vasilescu, et al., Dispersion polymerization of an azo-monomer and methylmethacrylate in the presence of oxazoline macromonomer. P Soc Photo-Opt Ins 7838 (2010) V.V. Jerca, F.A. Nicolescu, D.S. Vasilescu, et al., Dispersion polymerization of an azo-monomer and methylmethacrylate in the presence of oxazoline macromonomer. P Soc Photo-Opt Ins 7838 (2010)
221.
go back to reference V. Marturano, P. Cerruti, C. Carfagna, et al., Photo-responsive polymer nanocapsules. Polymer 70, 222–230 (2015)CrossRef V. Marturano, P. Cerruti, C. Carfagna, et al., Photo-responsive polymer nanocapsules. Polymer 70, 222–230 (2015)CrossRef
222.
go back to reference J. Keyvan Rad, A.R. Mahdavian, H. Salehi-Mobarakeh, et al., FRET phenomenon in photoreversible dual-color fluorescent polymeric nanoparticles based on azocarbazole/spiropyran derivatives. Macromolecules 49, 141–152 (2016)CrossRef J. Keyvan Rad, A.R. Mahdavian, H. Salehi-Mobarakeh, et al., FRET phenomenon in photoreversible dual-color fluorescent polymeric nanoparticles based on azocarbazole/spiropyran derivatives. Macromolecules 49, 141–152 (2016)CrossRef
223.
go back to reference M.W. Urban, Stimuli-responsive colloids: from stratified to self-repairing polymeric films and beyond. Curr. Opin. Colloid Interface Sci. 19, 66–75 (2014)CrossRef M.W. Urban, Stimuli-responsive colloids: from stratified to self-repairing polymeric films and beyond. Curr. Opin. Colloid Interface Sci. 19, 66–75 (2014)CrossRef
224.
go back to reference D. Hu, Z. Tian, W. Wu, et al., Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J. Am. Chem. Soc. 130, 15279–15281 (2008)CrossRef D. Hu, Z. Tian, W. Wu, et al., Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J. Am. Chem. Soc. 130, 15279–15281 (2008)CrossRef
225.
go back to reference Z. Tian, W. Wu, W. Wan, et al., Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J. Am. Chem. Soc. 131, 4245–4252 (2009)CrossRef Z. Tian, W. Wu, W. Wan, et al., Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J. Am. Chem. Soc. 131, 4245–4252 (2009)CrossRef
226.
go back to reference A.D.Q. Li, C. Zhan, D. Hu, et al., Photoswitchable nanoprobes offer unlimited brightness in frequency-domain imaging. J. Am. Chem. Soc. 133, 7628–7631 (2011)CrossRef A.D.Q. Li, C. Zhan, D. Hu, et al., Photoswitchable nanoprobes offer unlimited brightness in frequency-domain imaging. J. Am. Chem. Soc. 133, 7628–7631 (2011)CrossRef
227.
go back to reference W. Denk, J. Strickler, W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)CrossRef W. Denk, J. Strickler, W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)CrossRef
228.
go back to reference S.L. Ashworth, R.M. Sandoval, G.A. Tanner, et al., Two-photon microscopy: visualization of kidney dynamics. Kidney Int. 72, 416–421 (2007)CrossRef S.L. Ashworth, R.M. Sandoval, G.A. Tanner, et al., Two-photon microscopy: visualization of kidney dynamics. Kidney Int. 72, 416–421 (2007)CrossRef
229.
go back to reference K. Svoboda, R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006)CrossRef K. Svoboda, R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006)CrossRef
230.
go back to reference Y. Imanishi, K.H. Lodowski, Y. Koutalos, Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 46, 9674–9684 (2007)CrossRef Y. Imanishi, K.H. Lodowski, Y. Koutalos, Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 46, 9674–9684 (2007)CrossRef
231.
go back to reference J.A. Scherschel, M. Rubart, Cardiovascular Imaging Using Two-Photon Microscopy. Microsc. Microanal. 14, 492–506 (2008)CrossRef J.A. Scherschel, M. Rubart, Cardiovascular Imaging Using Two-Photon Microscopy. Microsc. Microanal. 14, 492–506 (2008)CrossRef
232.
go back to reference S. Yao, K.D. Belfield, Two-photon fluorescent probes for bioimaging. Eur. J. Org. Chem. 2012, 3199–3217 (2012)CrossRef S. Yao, K.D. Belfield, Two-photon fluorescent probes for bioimaging. Eur. J. Org. Chem. 2012, 3199–3217 (2012)CrossRef
233.
go back to reference H.M. Kim, B.R. Cho, Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015)CrossRef H.M. Kim, B.R. Cho, Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015)CrossRef
234.
go back to reference Y.I. Park, K.T. Lee, Y.D. Suh, et al., Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, 1302–1317 (2015)CrossRef Y.I. Park, K.T. Lee, Y.D. Suh, et al., Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, 1302–1317 (2015)CrossRef
235.
go back to reference C.S. Lim, B.R. Cho, Two-photon probes for biomedical imaging. Tetrahedron 71, 8219–8249 (2015)CrossRef C.S. Lim, B.R. Cho, Two-photon probes for biomedical imaging. Tetrahedron 71, 8219–8249 (2015)CrossRef
236.
go back to reference I.M. Schießl, H. Castrop, Deep insights: intravital imaging with two-photon microscopy. Pflügers Arch.: Eur. J. Physiol. 468, 1505–1516 (2016)CrossRef I.M. Schießl, H. Castrop, Deep insights: intravital imaging with two-photon microscopy. Pflügers Arch.: Eur. J. Physiol. 468, 1505–1516 (2016)CrossRef
237.
go back to reference F. Wang, E. Bélanger, M.-E. Paquet, et al., Probing pain pathways with light. Neuroscience 338, 248–271 (2016)CrossRef F. Wang, E. Bélanger, M.-E. Paquet, et al., Probing pain pathways with light. Neuroscience 338, 248–271 (2016)CrossRef
238.
go back to reference Z. Yang, A. Sharma, J. Qi, et al., Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 45, 4651–4667 (2016)CrossRef Z. Yang, A. Sharma, J. Qi, et al., Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 45, 4651–4667 (2016)CrossRef
239.
go back to reference B. Huang, M. Bates, X.W. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRef B. Huang, M. Bates, X.W. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRef
240.
go back to reference T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999)CrossRef T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999)CrossRef
241.
go back to reference S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRef S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRef
242.
go back to reference Y. Zhang, C.Y. Ang, M. Li, et al., Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18,179–18,187 (2015)CrossRef Y. Zhang, C.Y. Ang, M. Li, et al., Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18,179–18,187 (2015)CrossRef
243.
go back to reference C.M. Buffinton, K.J. Tong, R.A. Blaho, et al., Comparison of mechanical testing methods for biomaterials: pipette aspiration, nanoindentation, and macroscale testing. J. Mech. Behav. Biomed. Mater. 51, 367–379 (2015)CrossRef C.M. Buffinton, K.J. Tong, R.A. Blaho, et al., Comparison of mechanical testing methods for biomaterials: pipette aspiration, nanoindentation, and macroscale testing. J. Mech. Behav. Biomed. Mater. 51, 367–379 (2015)CrossRef
244.
go back to reference A.M. Rosales, K.M. Mabry, E.M. Nehls, et al., Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRef A.M. Rosales, K.M. Mabry, E.M. Nehls, et al., Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRef
245.
go back to reference E.R. Draper, R. Schweins, R. Akhtar, et al., Reversible photoreduction as a trigger for photoresponsive gels. Chem. Mater. 28, 6336–6341 (2016)CrossRef E.R. Draper, R. Schweins, R. Akhtar, et al., Reversible photoreduction as a trigger for photoresponsive gels. Chem. Mater. 28, 6336–6341 (2016)CrossRef
246.
go back to reference P.J. Nowatzki, C. Franck, S.A. Maskarinec, et al., Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation. Macromolecules 41, 1839–1845 (2008)CrossRef P.J. Nowatzki, C. Franck, S.A. Maskarinec, et al., Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation. Macromolecules 41, 1839–1845 (2008)CrossRef
Metadata
Title
Development and Characterization of Photoresponsive Polymers
Authors
Florica Adriana Jerca
Valentin Victor Jerca
Izabela-Cristina Stancu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-75801-5_1